injectable drugs’, recommends that ‘care must be taken when administering this antineumatic associated with other drugs that prolong the QT interval, namely several cytotoxic agents’. To effectively implement this recommendation, it was thought advisable to point out, in the computerised hospital drug database, all cytotoxic drugs that prolong the QT interval.

Purpose To review all cytotoxic drugs available in the Portuguese pharmaceutical market to identify those with the potential to prolong the QT interval, in order to allow hospital pharmacists to quickly and efficiently implement the above-mentioned recommendation.

Materials and Methods Literature review based upon all summaries of product characteristics (SPCs) of cytotoxic drugs available in Portugal and 48 literature sources from PubMed, found by intersecting the terms ‘cytotoxic-induced prolongation of the QT interval’, ‘antineoplastic-induced prolongation of the QT interval’ and ‘drug-induced prolongation of the QT interval’ and using the time limit interval from January/2003 to September/2012.

Results A total of 58 cytotoxic agents currently available in Portugal were investigated. Agents with the potential to prolong the QT interval are: arsenic trioxide, capetibamine, dasatinib, doxorubicin, epirubicin, eribulin, gefitinib, lapatinib, nilotinib, sorafenib, sunitinib and vandetanib. Substantial evidence supports the conclusion that arsenic trioxide and vandetanib have a risk of torsades de pointes (TdP) when used as directed in SPC. Regarding eribulin, lapatinib, nilotinib and sunitinib, there is insufficient evidence that they may cause TdP when used as directed in the SPC. Note that the hormone antagonists bicalutamide and tamoxifen also have the potential to prolong the QT interval.

Conclusions The database produced is a valuable tool to Portuguese hospital pharmacists who dispense cytotoxic drugs, contributing to the implementation of one of the recommendations of the above-mentioned regulation.

No conflict of interest.

GRP-050 DETECTION AND ANALYSIS OF ADVERSE DRUG REACTIONS IN CANCER PATIENTS IN A TERTIARY HOSPITAL
doi:10.1136/ejhpharm-2013-000276.050

M Ferrit, M Cañadas, N Martinez, A Madrid, M Salazar, MA Calleja. University Hospital Virgen de las Nieves, Pharmacy, Granada, Spain; University Hospital Virgen de las Nieves, Pharmacy, Granada, Spain

Background Adverse drug reactions (ADRs) are especially important with antineoplastic drugs because of their implications on patients’ health and quality of life.

Purpose To study the epidemiology, clinical features, diagnosis and pharmacology of ADRs detected in hospitalised patients treated with antineoplastic drugs.

Materials and Methods Analytical observational study (2011). We included all patients receiving cancer treatment. Study variables were: sociodemographic characteristics (age, sex), clinical (diagnostic, stage) and ADRs. The analysis was epidemiological: ADRs conducted (cumulative incidence, CI), clinical: (physiological system affected, type, duration, production mechanism, frequency, severity), pharmacological: (drug, administration, cycle) and diagnostic: (causality, chronological sequence).

Results 125 patients (mean age 51 years), 68% male, 32% female, 90% comorbidities. The most common diagnoses were lymphoma (28%), specifically non-Hodgkin’s Lymphoma (11%), acute lymphoblastic leukaemia (9%), acute myeloid leukaemia (6%) mainly in advanced stages (68%). We detected a total of 170 ADRs with antineoplastic agents (28% CI). Physiological systems primarily affected were: blood (89%), digestive system (25%). The most common ADR was cytopenia (49%) specifically febrile neutropenia (37%). The duration was <7 days (75%) and >7 days (25%). ADRs were mostly produced in a dose-dependent way (85%), were very common (94%) and according to severity were: lethal (2%), severe (5%), moderate (73%), mild (19%). The drugs involved were: cytarabine, methotrexate, idarubicin, Carmustine, cisplatin by intravenous administration (97%) and during first treatment cycles: cycle 1 (55%), cycle 2 (23%). 92% of the ADRs were tested and produced after drug administration (99%). In 60% and 19% of cases the measure to the measurements. It would be better to understand the ADRs as it can help develop other strategies to reduce their impact on the safety of cancer treatments in the first cycles.

No conflict of interest.