with all the patients, regardless of the levels of CD4 lymphocytes and the symptomatology.

Purpose Persistence: time a patient remains with a treatment from the beginning until the interruption, regardless of the reason. Aim of this research: comparison between the patients’ persistence who different ART.

Material and methods Descriptive, transversal and retrospective research that includes all the patients who have started an ART for HIV, 2013–10 October 2018, and who have suffered a change in the therapy.

Variables: starting date, initial treatment, changing date and reason for the change. Analysis: SPSS Statistics.

Results Six-hundred and sixteen patients have started ART and 186 (30.2%) of them have changed it.

Fifty-one (27.4%) patients started ART with single tablet regimens (STRs), 40 (78.4%) started with Tenofovir/Emtricitabine (TDF o TAF/FTC) and 11 (21.6%) Abacavir/Lamivudine (ABC/3TC). Thirty-two (62.7%) were with an integrase inhibitor (INI) as a third drug, and 19 (37.3%) with no analogous (ITINN).

One-hundred and thirty-five (72.6%) patients started with multiple tablet regimens (MTRs), 115 (85.2%) TDF/FTC and 16 (11.8%) ABC/3TC. Seventy-two (53.7%) were with protease inhibitor (IP) as a third drug, 34 (23.4%) ITINN and 28 (20.9%) INI.

The median survival for STRs was 229 days (95% CI 146.0 to 311.9) and 164 for MTRs (95% CI 87.8 to 240.2), no statistically significant differences. Regarding the third drug, the median survival with INI was 103 days (95% CI 65.0 to 140.9), 241 days with IP (95% CI 162.1 to 319.9) and 265 days with ITINN (95% CI 162.1 to 367.9). Between INI-IP and INI-ITINN, there were statistically significant differences.

One-hundred and five (56.5%) patients changed their treatment because of toxicity, 48 (25.8%) patients simplification, 19 (10.2%) patients virologic failure, seven (3.8%) patients due to interaction with their home treatment and seven (3.7%) other causes. One-hundred and five patients changed ART by toxicity (39 of them (37.1%) had as a third drug IP, 37 (35.2%) ITINN and 29 (27.6%) INI).

In 2013–2015, 20 (16.8%) patients started STRs and in 2016–2018, 31 (46.3%) patients started MTRs.

Conclusion ART combinations with STRs have a longer survival in the treatment and in patients with IP as a third drug, a greater survival is observed. The main cause of ART in naïve patients is toxicity. There was a gradual rise in the use of STRs throughout the years studied.

REFERENCES AND/OR ACKNOWLEDGEMENTS

- No conflict of interest.

4CPS-094 EFFECTIVENESS OF GLECAPREVIR/PIBRENTASVIR IN REAL-WORLD CLINICAL PRACTICE FOR CHRONIC HEPATITIS C INFECTION

Background Glecaprevir/pibrentasvir (G/P) is a pan-genotypic, once-daily, ribavirin-free direct-acting antiviral treatment for hepatitis C virus (HCV) infection in patients with and without compensated cirrhosis.

Purpose Our aim was to assess the effectiveness of G/P treatment in patients with HCV infection in clinical practice.

Material and methods Observational retrospective study in a tertiary hospital. Patients with HCV infection treated with G/P between November 2017 and April 2018 were included.

Demographic data such as age, gender, race and adjusted morbidity group (AMG) were collected. AMG is a new morbidity tool adapted to the Spanish Healthcare System that classifies the population into four groups depending on the severity of their diseases.

Clinical registered variables were: transmission route of HCV infection, previous treatment status, stages of liver fibrosis, HCV genotype, baseline viral load, viral load measured after 4 weeks of treatment (VL4) categorised as undetectable, detectable below quantification (DBQ) and detectable above quantification (DAQ) with viral load >15 IU/mL, and sustained virological response defined as an undetectable HCV RNA level 12 weeks after stopping antiviral treatment (SVR12).

Results A total of 110 patients completed the treatment (55 ±12 years, 46% males, 95% Europeans). The most frequent AMG were group 2 (42%) and 3 (23%). Transmission route was unknown in 57 patients (52%), blood transfusion in 19 patients (17%), intravenous drug use in 14 patients (13%), nosocomial in 11 patients (10%) and other routes in nine patients (8%). Eighty-two patients (75%) were naïve. Fibrosis degree was F0–F1 in 86 patients (78%), F2 in 20 (18%), F3 in 2 (2%) and F4 in 2 (2%). Most common HCV genotypes were 1b (72 patients, 63%) and 1a (21 patients, 19%). Mean baseline viral load was 3.18×10⁶ IU/mL.

VL4 was determined in 55 patients: in 75% of them it was undetectable, in 15% it was DBQ and in 10% it was DAQ. SVR12 was achieved by 109 patients (99%) and in one patient results were not available due to loss of follow-up.

Conclusion G/P is associated with high SVR12 rates in a real-world setting. Similar results were obtained in clinical trials.

REFERENCES AND/OR ACKNOWLEDGEMENTS

- No conflict of interest.
weeks after the end of treatment. Effectiveness was assessed by sustained viral response (SVR), defined as undetectable viral load at 12 weeks after the end of treatment (SVR12).

Results In our hospital, 1410 patients were treated with DAAs, of which 24 needed to be portrayed with these, 75% male, with a mean age of 53 (38–75) years, 20 infected by genotype 1 (12 1a and 8 1b), three genotype 3 and one genotype 4: 38% presented baseline VL >800,000 IU/ml and 90% grade fibrosis ≥3 (38% F4). The therapies that failed were: ledipasvir/sofosvubir (LDV/SOF)(12)+ribavirin (RBV) (three of them), daclatasvir/sofosbuvir (DCV/SOF) (five)+RBV (one), ombitasvir/paritaprevir/ritonavir/dasabuvir (OMB/PAR/RIT/DAS) (four) and simeprevir/sofosbuvir (SMV/SOF)+RBV (three). Resistance was detected in five patients: Q80K (one), Q30H (one), Y93H (two) and substitution S556G (one). Failure was due to relapse except for one case of reinfection. The rescue treatments were: LDV/SOF (seven), SMV/SOF (seven), OMB/PAR/RIT/DAS (two), sofosbuvir/velpatasvir/voxilaprevir (SOF/VEL/VOX) (three) and glecaprevir/pibrentasvir (GLE/PIB) (one) in genotype 1, DCV/SOF (one), GLE/PIB (one) and LDV/SOF (one) in genotype 3 and SOF/VEL/VOX (one) in genotype 4. The duration of treatment was 24 weeks in 64% of cases. Eighty-eight per cent reached SVR12: for two patients we had no data and one died during the course of treatment.

Conclusion In our case the treatment with DAAs, after a previous failure of these, has turned out to be effective, consolidating other studies already published, but further studies with more patients are required.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

4CPS-097 COBICISTAT INTERACTIONS WITH CHRONIC TREATMENTS

1. M Vélez-Díaz-Pallarés*, 1T Gramage Caro, 1M Rodríguez Sagrado, 1C Palomar Fernández, 1A Moreno Zamora, 2M Vivancos Galego, 1E Iliás, 1M Carreter Gamica, 1M Aitienza Martín, 1T Bermejo Vicedo. 1Hospital Ramon y Cajal, Pharmacy, Madrid, Spain; 2Hospital Ramon y Cajal, Infectious Diseases, Madrid, Spain

Background Cobicistat is used in clinical practice as a pharmacokinetic enhancer of protease and/or integrase inhibitors. Nevertheless, the mechanism by which this occurs (metabolism inhibition) makes cobicistat-containing HIV regimens very prone to interact with chronic treatments, which triggers toxicity.

Purpose To reconcile HIV treatments containing cobicistat and to analyse the interactions with the chronic treatment.

Material and methods Patients attending the outpatient pharmacy clinic between January and September 2018 with a regimen containing cobicistat were included. During the dispensation of their HIV medication, patients’ treatment was reconciled by two methods: pharmacy interview and consultation of the prescribed medication in the primary records. The interaction between the cobicistat and the patients’ chronic treatment was checked in drugs.com. In this website interactions are classified as major, moderate, minor and non-interaction.

Results Eight-hundred and forty-two treatments were reconciliated (patients: 47.9±11.5 years old; 82.4% male). Twenty-eight different HIV regimens were identified, the most frequent being the one containing Genvoya (cobicistat, elvitegravir, emtricitabine, tenofovir alafenamide) (68.4%). Two-hundred