weeks after the end of treatment. Effectiveness was assessed by sustained viral response (SVR), defined as undetectable viral load at 12 weeks after the end of treatment (SVR12).

Results In our hospital, 1410 patients were treated with DAAs, of which 24 needed to be portrayed with these, 75% male, with a mean age of 53 (38–75) years, 20 infected by genotype 1 (12 1a and 8 1b), three genotype 3 and one genotype 4: 38% presented baseline VL >800,000 IU/ml and 90% grade fibrosis ≥3 (38% F4). The therapies that failed were: ledipasvir/sofosbuvir (LDV/SOF)(12)+ribavirin (RBV) (three of them), daclatasvir/sofosbuvir (DCV/SOF) (five)+RBV (one), ombitasvir/paritaprevir/ritonavir/dasabuvir (OMB/PAR/RIT/DAS) (four) and simeprevir/sofosbuvir (SMV/SOF)+RBV (three). Resistance was detected in five patients: Q80K (one), Q30H (one), Y93H (two) and substitution S556G (one). Failure was due to relapse except for one case of reinfection. The rescue treatments were: LDV/SOF (seven), SMV/SOF (seven), OMB/PAR/RIT/DAS (two), sofosbuvir/velpatasvir/voxilaprevir (SOF/VEL/VOX) (three) and glecaprevir/pibrentasvir (GLE/PIB) (one) in genotype 1, DCV/SOF (one), GLE/PIB (one) and LDV/SOF (one) in genotype 3 and SOF/VEL/VOX (one) in genotype 4. The duration of treatment was 24 weeks in 64% of cases. Eighty-eight per cent reached SVR12: for two patients we had no data and one died during the course of treatment.

Conclusion In our case the treatment with DAAs, after a previous failure of these, has turned out to be effective, consolidating other studies already published, but further studies with more patients are required.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
and forty different chronic drugs were prescribed (2.2±2.4 drugs per patient). Twenty-one drugs were classified to have a major interaction with cobicistat, 40 a moderate interaction, five minor, 147 did not have any interaction registered in drugs.com and 27 drugs did not appear in this web. Pharmacists made 87 interventions with 35 different drugs. The most frequent were inhaled budesonide (12) and nasal fluticasone (11). Forty-four (51%) of the pharmaceutical interventions did not need the physician’s approval (17 to interrupt chronic treatments, 13 to change treatments, 12 to monitor and one to change dose). The rest (43) required physician approval and these consisted of more varied actions, highlighting six changes in the HIV regimen to eliminate cobicistat. We registered possible/probable toxicities related to the inhibition of metabolism due to cobicistat in eight patients.

Conclusion Pharmacist reconciliation detects numerous potential interactions. Pharmacist intervention helped to modify several treatments and make treatments safer.

REFERENCES AND/OR ACKNOWLEDGEMENTS

None.

No conflict of interest.

4CPS-098 INFLUENCE OF PHARMACOLOGICAL INTERACTIONS IN HEPATITIS C TREATMENT SELECTION IN OPIATE-DEPENDENT PATIENTS

A Zurutuza*, MP Carmona, D Garcia, J Landa, T Gonzalez, P Pascual, G Lopez, L Lombera, C Ria, MP Bachiller, MJ Gayan. Donostia University Hospital, Pharmacy, San Sebastian, Spain

10.1136/ejhpharm-2019-ehhpconf.247

Background The therapeutic strategy for chronic hepatitis C (CHC) in our health system established that in mono- or co-infected HCV/HIV patients in whom prioritised therapy with glecaprevir/pibrentasvir is contraindicated, their designated medication (CM) will be changed and/or an alternative therapy for HCV will be used: sofosbuvir/velpatasvir (+7% cost per patient) or elbasvir/grazoprevir (+64% cost per patient).

Purpose To analyse the influence of pharmacological interactions in the selection of HCV treatment in opiate-dependent patients.

Material and methods All treatments started in a Mental Health Network (which opiate-dependent patients attend) from 1 January 2018 to 31 August 2018 were analysed.

Prior to the approval of hepatitis C treatment by the CHC committee, the pharmacist reviewed the treatment and looked for possible pharmacological interactions of the HCV prioritised therapy with the CM. If there was a significant interaction, the pharmacist recommended either to change/stop the CM or to choose an alternative HCV treatment.

Results Approved treatments by the CHC committee: 96. Completed treatments: 73, 98% monoinfected. HCV genotype: 1a: 31 (42%), 3: 22 (30%), 4: 11 (15%), 1b: seven (10%) and 2: two (3%). Forty-seven (64%) patients were ≤F3, 21 (29%) F4 and five (7%) were unknown.

64/73 (88%) patients were treated with glecaprevir/pibrentasvir. A CM change was needed in 14/64 (22%) patients: to avoid metformin, delay proton-pump inhibitor administration time, to switch to another statin and stop oxcarbazepine.

Only 9/73 patients (12%) received a non-prioritised treatment with sofosbuvir/velpatasvir. In eight of them due to interactions with their CM: antipsychotics (five), HIV protease inhibitor (one), anti-platelet (one) and ethinylestradiol (one).

In another patient the reason was that he was Child-Pugh B.

The sustained viral response is available only in 20% of patients, so the effectiveness has been measured as viral response at the end of treatment (VRE), being 96% (70/73) up to date. Three patients are pending to be determined.

Conclusion The review of pharmacological interactions has allowed the treating of 88% of patients with the prioritised therapy, with an effectiveness in VRE of 96%, according to the results of the clinical trials.

The pharmacological interactions evaluation and pharmaceutical interventions optimize the risk benefit ratio and contribute to the efficient use of HCV therapies.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No acknowledgements.

No conflict of interest.

4CPS-099 PALIVIZUMAB OFF LABEL USE IN TERTIARY REFERRAL HOSPITAL

A Gasso*, V Gimeno Ballester, P Oiller Martinez, I Larrode Leciñena, O Pereira Blanco, MR Abad Saratomil. Hospital Universitario Miguel Servet, Pharmacy, Zaragoza, Spain

10.1136/ejhpharm-2019-ehhpconf.248

Background The indication of palivizumab is the prevention of serious lower respiratory tract disease requiring hospitalisation caused by the respiratory syncytial virus (RSV) in children at high risk for RSV disease, but medication assessment in different conditions to the authorised ones is a fairly common situation in our environment, thus the hospital maintain a multidisciplinary pharmacy committee which evaluates this medication for personalised authorisation.

Purpose The purpose of this study is to evaluate palivizumab off-label use (2016–2017).

Material and methods Observational retrospective study of patients receiving palivizumab off-label use. The analysed variables were: base pathology, gestational age, hospitalisation number, costs and evidence degree according to the US Agency for Healthcare Research and Quality scale.

Results Eighteen children (22.2% repeated prophylaxis the second year) were treated with palivizumab with an average age of 24.76 (5–63 months), 44.4% girls. Palivizumab use of off label represented 8.7% of total patients treated with palivizumab (230 patients). 33.3% were diagnosed with cystic fibrosis, 33.3% congenital myopathy and 5.5% respiratory disorders (recurrent pneumonia, pulmonary hypoplasia and respiratory infections secondary to kidney dysplasia, esophageal atresia and interstitial lung disease). According to the evidence level, in children with cystic fibrosis it presents grade Ib, in myopathy prophylaxis the grade is II (cohorts) and for esophageal atresia, pulmonary malformations and serious respiratory diseases the grade is IV (expert opinion). 33.3% of patients had a gestational age under 37 weeks. 11.1% of hospitalisations for RSV infections secondary to kidney dysplasia, esophageal atresia, pulmonary malformations and serious respiratory diseases the grade is IV (expert opinion). 33.3% of patients had a gestational age under 37 weeks. 11.1% of hospitalisations for infections secondary to kidney dysplasia, esophageal atresia, pulmonary malformations and serious respiratory diseases the grade is IV (expert opinion).

The sustained viral response is available only in 20% of patients, so the effectiveness has been measured as viral response at the end of treatment (VRE), being 96% (70/73) up to date. Three patients are pending to be determined.

Conclusion The review of pharmacological interactions has allowed the treating of 88% of patients with the prioritised therapy, with an effectiveness in VRE of 96%, according to the results of the clinical trials.

The pharmacological interactions evaluation and pharmaceutical interventions optimize the risk benefit ratio and contribute to the efficient use of HCV therapies.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No acknowledgements.

No conflict of interest.