INTRODUCTION OF SELF-MANAGEMENT IN A HOSPITAL PHARMACY

LR Duckert*, T Schor, NB Rasmussen. Capital Region Hospital Pharmacy, Production, Herlev, Denmark

10.1136/ejhpharm-2019-eahpconf.27

Background In our region and hospital pharmacy the values are Trust, Wholeness, Openness and Professionalism. We trust that all employees wish to make a difference for our patients. We engage in an open and honest dialogue and we focus on enabling all employees to think and act for themselves. These values inspired us to introduce self-management to one of our production units employing 22 people.

Self-management (self-direction) is a way to empower employees and thereby create more passion and job satisfaction within the organisation.1 We believe that it will help prepare our organisation to meet future development in a proactive way.

Purpose Our goal is to introduce and, with time, obtain a self-management culture in the unit. We focus on enabling the single individual but always with the goals of the unit in mind.

Material and methods Introducing self-management in a unit include changes for both employees and managers.

For the leaders has been on giving more feedback to employees and setting the direction for the unit in opposition to micromanaging. It has never been the intention to cut down the group of leaders.

Employees were introduced to self-management in workshops, Kaizen meetings and in the unit’s everyday work. The employees were invited and supported to bring up topics where they as individuals or a group could see potential in self-managing.

The job satisfaction was measured every 3 months in a questionnaire and followed up on a daily basis.

Results Most employees found the changes challenging in a good way. As expected, the employees embraced the changes at different paces and identified relevant topics of different complexity.

For chosen topics, a group of employees initiated the needed changes with support from management or other departments in the hospital pharmacy. Initial chosen topics included production planning, skills development and recruitment.

Conclusion We started the process working bottom-up, thereby ensuring the employees were included in every step. The process so far has been successful and has enabled the employees to approach areas they had not previously. We are changing the culture, but the transformation is an ongoing process.

REFERENCE AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

AN ASSESSMENT OF HOSPITAL PHARMACISTS’ JOB SATISFACTION: APPLICATION OF THE JOB SATISFACTION SURVEY

RA Esteves Grangeia*, RM Baptista, MR Silva, SP Pinho Martins, CS Ferreira Batista. Centro Hospitalar e Universitário de Coimbra, Production, Coimbra, Portugal

10.1136/ejhpharm-2019-eahpconf.28

Background Presently a legally defined specialisation programme and hospital pharmacist career does not exist. This fact is directly related to job satisfaction. Meanwhile, new legislation was published regarding a new career.

Purpose The aim is to evaluate the overall job satisfaction and the nine-subscale measurement of the Job Satisfaction Survey (JSS), considering the following variables: gender, age, seniority, work region, coordination functions and private/public sector.

Material and methods We conducted a descriptive statistical study based on information collected by the JSS by Spector (1985) that was adapted to Portuguese by Malheiros (2009).1 The survey was made available online during 54 days (15 January 2018–9 March 2018).

The nine subscales considered by Spector are: pay, promotion, supervision, benefits, contingent rewards, operating procedures, co-workers, nature of work and communication.

To evaluate the data Excel and SPSS were used. Internal consistency reliability (Cronbach’s alpha test) was computed because, after research, no evidence was found of any report of a similar study.

Results One hundred and nine pharmacists participated in the survey (9% of total hospital pharmacists). The overall satisfaction grade was 2.80/6 (slightly dissatisfied). The satisfaction of the subscales was: 1.73 (pay), 1.72 (promotion), 3.58 (supervision), 1.99 (benefits), 2.41 (contingent rewards), 2.58 (operating procedures), 3.67 (co-workers), 4.58 (nature of work) and 2.99 (communication).

Analysing the variables, we ascertained that female pharmacists (2.83), who are younger than 35 years (2.91) and have worked less than 3 years (3.07), who work in Lisboa e Vale do Tejo (2.99), who are fixed-term workers (3.52), who have coordination functions (3.06) and who work in a private sector (3.04) are the most satisfied.

The Cronbach’s alpha test values were above 0.8, indicating a good internal consistency of the survey.

Conclusion The sample under study is slightly dissatisfied (2.8/6) with their job. We can observe a separation tendency of scale related to the working environment, with better results, comparing scales related to remuneration. This indicates that dissatisfaction results in aspects that are not controllable by professionals but only by the institutions/government.

The high values of satisfaction with the nature of the work (4.58) indicates that the sample of pharmacists in this study like their profession.

REFERENCE AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

IMPACT OF THE IMPLEMENTATION OF THE ENFIT SYSTEM ON THE ADMINISTRATION OF ENTERAL MEDICATION

A Etangsale*, PF Leclercq, L Crine, C Dupont. Centre Hospitalier Sud Francilien, Essonne, Corbeil-Essonnes, France

10.1136/ejhpharm-2019-eahpconf.29

Background The ISO 80369–3 standard makes it possible to secure the enteral nutrition connectors by introducing the ENFit system, which differs from the old connector technology in that it has a thinner internal diameter.
Purpose The aim of this study was to determine the impact of this change of connectivity on the administration of enteral medication.

Material and methods The first part of the study consisted of an evaluation of the professional practices (EPP) of the nurses on the enteral administration by a questionnaire.

The second part was an in-vitro study comparing several methods of administration via ENFit tubing. Morphine sulphate extended release (ER) placebo micro-granules were used as a model. An amount of microgranules corresponding to the lowest commercially available ER morphine sulphate assay was weighed and enumerated to extrapolate at the highest dosage, which will be used as a reference throughout the study. A quantity of micro-granule was weighed, suspended in water and administered at the site of the ENFit tubing. Subsequently the tubing was rinsed with water. The number of micro-granules at the inlet and outlet of the tubing were compared to determine the percentage of micro-granules administered.

Results Ninety-five nurses from 10 care units participated in the EPP. The simultaneous grinding of several drugs was a common practice (88%). The correct methods of rinsing of the ENFit tubing and dissolving of medications were applied by only 20% of nurses.

The in-vitro study has shown that the change of connectors prevents the direct introduction of micro-granules at the site of administration. The first method of administration, which consisted of suspending micro-granules in a cup, resulted in a 10% loss. The second, which consisted of putting the micro-granules in a syringe and then taking the water, resulted in a 3% loss. The third was the most suitable method, because it did not cause any loss, consisting in suspending the micro-granules in a syringe filled with water.

Conclusion The ENFit system complicates the enteral administration of drugs in the form of micro-granules. Corrective actions are needed to optimize administrative practices, including support for nurses and the development of medical devices that would limit misuse.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Thanks to the nurses.
No conflict of interest.

BIOLOGICS UTILISATION AND ITS EFFICIENCY THROUGH A HOSPITAL PHARMACY CENTRALISED MANAGEMENT SYSTEM

1Feio*, 2Poitier, 3F Machado, 4V Vandewalle, 4V Andreozzi, 4J Félix, 1Centro Hospitalar e Universitário de Coimbra, Serviços Farmacêuticos, Coimbra, Portugal; 2Exigo Consultores, External Affairs and Market Intelligence, Lisbon, Portugal; 3Exigo Consultores, Quantitative Department and Research and Innovation, Lisbon, Portugal; 4Exigo Consultores, Director, Lisbon, Portugal

Background In October 2017 our hospital implemented a new policy for biologics’ utilisation. The pharmaceutical services were responsible for the management and control of the new policy, creating the Fully Integrated Biosimilars utilisation management System (FIBS).

Purpose This research aims to provide an efficiency assessment of FIBS.

Material and methods The new policy was coincident with the introduction of biosimilars in the market and so no control group was available. In this context the FIBS system efficiency was defined as the ratio between the observed and optimal (simulated) biosimilars utilisation levels. Optimal biosimilars utilisation was estimated by mapping the FIBS process, from prescription to dispensing of biologics. The step-by-step process, including timelines and inter-dependencies between stakeholders were modelled using the Anylogic software, to simulate a counterfactual optimal level of biosimilars utilisation over time for all patients on infliximab, etanercept and rituximab between October 2017 and September 2018 (cut-off date). FIBS relies on acquisition, prescription and dispensing of biologics by international non-proprietary name and recommends: for naïve patients, the prescription and dispensing of the most economically accessible biologic (brand or biosimilar) is mandatory; and maintaining the same biologic brand in patients for a period of no less than 12 months. After this period, conditions exist to transition to the economically most accessible biologic available. Exceptions require a clinical justification on a patient-by-patient basis by prescribing physicians. Exceptions need to be validated by the Hospital Pharmacy, Hospital Medicines and Therapeutic Committee and Hospital Board.

Results A total of 543 patients were analysed since October 2017. The level of FIBS system efficiency increased very rapidly in this short time: 50% (2 months) and 80% (4 months). System efficiency of FIBS has been increasing steadily since then, reaching levels above 85% in September 2018. This means that 85% of patients eligible (optimal) for biosimilar utilisation were on biosimilar therapy 11 months after policy initiation and FIBS implementation.

Conclusion The Fully Integrated Biosimilars utilisation management System demonstrates high levels of system efficiency in the utilisation of biologic therapy at hospital level, less than one year after its implementation.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.