to intolerance and three patients (with normal TPMT levels) due to recurrent hepatotoxicity. 30/44 patients tolerated combined therapy. 27/30 patients achieved an optimised TGN: MeMPl ratio (<11). Specific ratios included 0 (n=13), 1 (n=9), 2 (n=4), 3 (n=1). 3/30 patients required Allopurinol 100 mg to obtain a ratio <11.

Conclusion The majority of patients (90%) obtained an effective TGN:MeMPl ratio with reduced Allopurinol dosing at 50 mg. Those that did not achieve this ratio (10%) responded to dose escalation to 100 mg. TPTM status did not appear to influence the effect of low-dose Allopurinol. Hepatotoxicity may still occur with combined Allopurinol and thiopurines therapy. Low-dose Allopurinol may be considered a viable therapeutic strategy providing that appropriate clinical and biochemical surveillance is maintained.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Thanks to gastroenterologists and the chief pharmacist.
No conflict of interest.

4CPS-149 ANALYSIS OF INTRA-PATIENT VARIABILITY OF PLASMAC LEVELS OF TACROLIMUS IN EARLY MAINTENANCE OF RENAL POST-TRANSPLANT
1S Garcia Garcia*, 2DS Oleas Vega, 3MB Aller Hernández, 1T Torres Rodriguez, 2BO Chamoun Huacón, 1E Pecías Bosch, 1JB Montoro Ronsano. 1Vall d’Hebron Hospital, Pharmacy Service, Barcelona, Spain; 2Vall d’Hebron Hospital, Nephrology Service, Barcelona, Spain; 3Vall d’Hebron Hospital, Artificial Intelligence Information Service, Barcelona, Spain
10.1136/ejhpharm-2019-eahpconf.297

Background Tacrolimus is a calcineurinic inhibitor characterised by a narrow therapeutic window and high variability of plasmatic levels.

Purpose To assess the intra-patient variability (IPV) of tacrolimus plasmatic levels (FKplasm) in kidney-transplanted patients (KTP) during the early maintenance period (EMP), 3 to 6 months after surgery. In EMP begins a progressive reduction of immunisation to establish the future immunosuppressant dosage.

Material and methods Observational retrospective study in KTP within 2015–2017, monitored along the EMP and at least one determination of FKplasm.

The clinical data was collected from the hospital’s medical records, including kind of transplant, FKplasm and analysis date.

The FKplasm were analysed for each patient along the EMP. The mean and standard deviation of plasma concentrations, the number of blood determinations, the coefficient of variation (CV), the proportion of values lower than 5 and 7 ng/ml (P5 and P7) and the area under the concentration-estimated time (AUC-Min) were evaluated in EMP. To describe the IPV the CV was used.

The range of therapeutic FKplasm values was established between 5–20 ng/mL. The therapeutic control was considered inadequate if IPV was superior to 30% or the P7 or P5 was superior to 20%.

To evaluate the IPV and to compare the intra-patient values obtained, the analysis of variance and the Fisher–Snedecor F distribution were used (statistical analysis with SPSS).

Results Two-hundred and eleven patients and 996 tacrolimus determinations were included. The mean of FKplasm was 8.57 ng/ml (95% CI: 8.26 to 8.88) and the mean number of determinations was 4.72 (95% CI: 4.17 to 5.26) during the follow-up period.

The mean CV of FKplasm was 25.41% (95% CI: 23.09 to 27.74). A total of 31.75% (95% CI: 25.42 to 38.09) of the patients had a CV greater than 30%. The AUC-Min was 7.61 ng/ml/day (95% CI: 7.2 to 8.0).

Finally, the mean percentages of FKplasm lower than 7 ng/ml and 5 ng/ml were 27.20% (95% CI: 23.16 to 31.24) and 9.28% (95% CI: 6.49 to 12.06), respectively. The proportion of patients with values higher than 20% was 52.3% (95% CI: 45.6 to 58.8). P7 and 17.2% (95% CI: 12.3 to 21.8) P5.

The IPV of FKplasm during the EMP was higher than recommended in 31.75% of cases, similarly, 27.2% of the determinations were <7 ng/ml.

Conclusion Taking into account the limitations of this study, the early detection of patients with high IPV, or analytical values <7 ng/ml in EMP is essential, since these are associated in the long term with a worse prognosis, leading to chronic rejection of the graft and/or greater pharmacological toxicity.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Thanks to all authors for their involvement.
No conflict of interest.

4CPS-149 EVALUATION OF INTRA-PATIENT VARIABILITY OF THE TACROLIMUS PLASMAC LEVELS IN THE DIFFERENT PERIODS OF THE KIDNEY POST-TRANSPLANT
1S Garcia Garcia*, 2DS Oleas Vega, 3MB Aller Hernández, 1T Torres Rodriguez, 2BO Chamoun Huacón, 1E Pecías Bosch, 1JB Montoro Ronsano. 1Vall d’Hebron Hospital, Pharmacy Service, Barcelona, Spain; 2Vall d’Hebron Hospital, Nephrology Service, Barcelona, Spain; 3Vall d’Hebron Hospital, Artificial Intelligence Information Service, Barcelona, Spain
10.1136/ejhpharm-2019-eahpconf.298

Background The management of immunosuppression in kidney transplant (KT) is divided into: induction from 0 to 3 months, early maintenance (EM) from 3 to 6 months and late maintenance (LM) from 6 months. During the induction, more intense immunosuppression is required to prevent acute rejection of the graft.

Purpose To assess the mean concentration, the intra-patient variability (IPV) of tacrolimus plasmatic levels (FKplasm) and their evolution during the different periods of KT.

Material and methods Observational retrospective study included kidney transplanted patients since January 2015, with a minimum post-transplant follow-up of 2 years.

The clinical data was collected from the hospital’s medical records, including: kind of transplant, surgery date and FKplasm from the transplantation date to 2 years of follow-up.

The variables of the study were calculated considering the different stages of KT: induction, EM and LM: 6–12 months (LM1), 1–2 years (LM2) and 2–3 years (LM3). The mean of FKplasm, the number of analytical determinations performed and the percentage of patients with concentrations lower than 5 ng/mL were calculated. The therapeutic range of FKplasm value was 5–20 ng/mL.

To describe the IPV of FKplasm, the coefficient of variation (CV) was calculated. The IPV was considered inadequate when the CV values were higher than 30%.

The statistical analysis was carried out using SPSS, and to compare population means the variance analysis and Fisher–Snedecor’s F distribution were used.

Results Two-hundred and twelve patients and 4180 measures of FKplasm were included. The values of the variables analysed were expressed in the temporal order of induction, EM, LM1, LM2 and LM3:

Mean FKplasm: 9.63 ng/ml (95% CI: 9.33 to 9.92), 8.57 ng/ml (95% CI: 8.26 to 8.88), 8.01 ng/ml (95% CI: 7.71