The influence of the TacPP administered (immediate/prolonged/extended release) and the administration route (oral/nasogastric tube), in case of immediate-release tacrolimus form was also analysed.

Therapeutic control was considered inadequate if CV30 occurred, or P5 was higher than 20%.

Statistical analysis was done using SPSS. Variance analysis and the Kruskal–Wallis test were used to compare quantitative variables.

Results Eighty-four patients were included. The values of the variables analysed – mean FKs, P5 and CV30 observed – were 8.0 ng/mL (SD, 4.2), 19.3% (SD, 39.6) and 66.0% (DE, 46.9). Technically, 68.3% patients had poor FKs control levels.

According to TacPP, values for mean FKs, P5 and CV30 observed were:

Immediate-release tacrolimus: 8.5 ng/mL (95% CI: 6.2 to 10.9), 28.6% (~95% CI: 12.8 to 44.3) and 58.1% (95% CI: 39.7 to 76.5).

Prolonged-release tacrolimus: 7.9 ng/mL (95% CI: 6.2 to 10.9), 10.5% (95% CI: 1.0 to 25.6) and 66.7% (95% CI: 55.0 to 78.3).

Extended-release tacrolimus: 9.6 ng/mL (95% CI: 8.0 to 11.3), 8.3% (95% CI: 0.0 to 27.0) and 83.3% (95% CI: 58.6 to 100.0).

According to the administration route (immediate-release tacrolimus form), values for mean FKs, P5 and CV30 observed were:

Oral: 8.5 ng/mL (95% CI: 6.2 to 10.9), 28.6% (95% CI: 6.7 to 24.9) and 58.1% (95% CI: 40.0 to 76.5).

Nasogastric tube: 6.8 ng/mL (95% CI: 5.3 to 8.0), 32.3% (95% CI: 14.8 to 49.7) and 76.0% (95% CI: 58.0 to 94.0).

Mean FKs, P5 and CV30 observed varied widely among the TacPP and administration route: statistical differences were only achieved for P5 within TacPP (p=0.044).

Conclusion Taking into account the limitations of this study, our findings suggest that high IPV of FKs exist, at least within the first month after the transplant date. Moreover, the IPV of FKs after their administration through immediate-prolonged release preparations and/or a different administration route shows a wide range of variability that in concrete cases (P5) raises statistical significance.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Thanks to all authors for their involvement.

No conflict of interest.

**4CP-153 COMPARATIVE ANALYSIS BETWEEN ORIGINATOR AND BIOSIMILAR INFLIXIMAB ACCORDING TO TROUGH LEVELS IN PATIENTS WITH INFLAMMATORY BOWEL DISEASE**

1M Gil Candel*, 2C Iniesta Navalón, 1M Ortiniente Candela, 1N Salar Valverde, 1C Pastor Mondejar, 2L Rentero Redondo, 2C Caballero Requejo, 2E Urieta Sanz. 1Hospital General Universitario Reina Sofia, Hospital Pharmacy, Murcia, Spain; 2Hospital Comarcal del Noroeste, Hospital Pharmacy, Caravaca de la Cruz Murcia, Spain

Purpose Eighteen months after the implementation of the pharmaceutical consultation the purpose was to assess pharmaceutical interventions on patients, oncologists, physicians and community pharmacists.

Material and methods Revision of our consultation sheets from January 2017 to June 2018.

Sixty-four pharmaceutical consultations occurred for 56 patients (33 males; 28 females; mean 69 years (33–93) with an average time of 33.4 min.

Results Seventy-nine medication-related problems were reported: 31 side effects, 15 drug-drug interactions, 10 absences of adapted comedication and eight inobservances.

One-hundred and two pharmaceutical interventions had been achieved: 51 on patients, 28 on oncologists, 18 on community pharmacists, four on nurses and one on a physician. During pharmaceutical consultation 51 patient information sheets on oral chemotherapy were given to patients, who mostly had medium or bad theoretical knowledge of their oral chemotherapy, which could reduce its efficacy. Twenty-eight feedbacks were transmitted to oncologists by phone, face-to-face or secure mail. Eighty-two per cent of pharmaceutical interventions were accepted by oncologists. Eighteen community pharmacists had been contacted by phone. A consultation report condensed and patient information sheets were sent to them by fax (n=15) or secure e-mail (n=3). Four nurses had received information by phone on modalities of storage, administration, waste and side-effects management. One physician was contacted for a drug-drug interaction.

Our first results showed the quantitative and qualitative importance of pharmacist interventions with patients and other health professionals. However, to improve the quality of our consultations we must develop a systemic and easy feedback to these professionals. A follow-up for the patients during the treatment will be useful.

Conclusion Completed by patient information sheets and feedback, the pharmaceutical consultations appear essential to facilitate care by other health professionals and to give patients significant information concerning their health.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
versus IFX-B, as well as the prevalence of immunogenicity between both.

**Material and methods** We conducted a retrospective observational study (March 2017–September 2018). We included all patients with IBD who received maintenance therapy with IFX and underwent pharmacokinetic monitoring.

The variables studied were: sex, age, diagnosis, type of drug (IFX-O or IFX-B), number of serum samples collected, serum trough levels IFX and the presences of antibodies. Blood extraction was performed in trough levels and determined by sandwich ELISA (Promonitor). The IFX therapeutic range was defined as between 3–10 mcg/mL. We used the $X^2$ test to compare the association between categorical variables and the student $t$-test for quantitative variables. All tests were performed using SPSS v.23.0.

**Results** We included 70 patients (65.7% were males). The average age of the study population was 41.8 (DE: 14.8) years, 74.4% had Crohn’s disease.

Concerning treatment, 49.3% were treated with IFX-O and 50.7% with IFX-B. We analysed 174 serum samples (61.5% IFX-O), 2.9 (SD: 1.1) and 1.8 (SD: 1.0) samples per patient of IFX-O and IFX-B respectively. Mean serum trough levels of IFX-O were 7.2 (SD: 4.5) mcg/mL versus 8.3 (SD: 7.8) mcg/mL with IFX-B ($p=0.790$), of which 61.9% and 47.8% ($p=0.137$) were in the therapeutic range respectively. In terms of immunogenicity, 13.1% patients presented antibodies anti-IFX (11.6% IFX-O and 15.4% IFX-B, $p=0.43$).

**Conclusion** In our study there was no significant difference in the mean concentration of drugs between IFX-O and IFX-B, and neither in immunogenicity, with IFX-B as a cost-effective alternative to the originator product. Pharmacokinetic monitoring represents a fundamental mainstay in the optimisation of these treatments.

**REFERENCE AND/OR ACKNOWLEDGEMENTS**


No conflict of interest.

**4CPS-155** A NEW MULTIDISCIPLINARY MODEL WITH THE CLINICAL PHARMACIST FOR MEDICATION RECONCILIATION IN THE PATIENT WITH ADVANCED RENAL DISEASE

1S Masucci*, 2G Soragna, 3E Cerutti, 4M Riba, 4MC Azzolina, 2C Vitale, A Gasco. 1Mauriziano Hospital, Hospital Pharmacy, Torino, Italy; 2Mauriziano Hospital, Nephrology Department, Torino, Italy; 3Universitat de Barcelona, Biochemistry and Physiology Department, Barcelona, Spain; 4Mauriziano Hospital, Health Management Unit, Torino, Italy

10.1136/ejhpharm-2019-eahpconf.304

**Background** Most of the patients with advanced chronic kidney disease (ACKD) are fragile due to multimorbidity and associated polypharmacy. For this kind of population, polypharmacy and potentially inappropriate prescribing are common problems that impact both on patient compliance and on drugs cost for the National Health System (NHS). For therapy with high pill-burden medication reconciliation (MR), supported by Information and Communication Technology’s (ICT) instrument, is one of the most effective tools in preventing over/under/mis-prescription and drug interaction (DI), and the clinical pharmacist is the suitable figure to support the clinician in promoting the appropriateness of therapies in the transition of care.

**Purpose** The aim was to estimate compliance and the economic impact of a multidisciplinary clinical-pharmacist-led MR process in patients with ACKD.

**Material and methods** Selection and implementation of ICT tool; identification of mistaken prescription with indicators of appropriateness, such as START/STOPP and Beers criteria;