While responses to most TDF items relating to clinical practice were positive, the majority (n=24) disagreed that they had sufficient time to practise their role.

For prescribing, 16 of the 24 active NMPs were prescribing daily, six weekly and only one ad hoc. They were prescribing in all renal conditions (n=13), dialysis (n=11), transplantation (n=10), anaemia (n=7) and bone mineral disease (n=6). TDF items for prescribing were mostly positive but (n=11) disagreed that they had sufficient time to practise. Conclusion Results of this survey indicate high levels of complex clinical practice including widespread NMP activity, demonstrating development of practice, including prescribing, since the previous systematic reviews. 12 Qualitative research is required to provide further in-depth insights to practice.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
were empirical prescriptions, 518 (33.9%) inappropriate prescribing, 489 (31.9%) documented and 258 (16.8%) were according to the protocol approved by the institution. The physician’s acceptance of pharmacy interventions was 52.5%. The mean treatment duration varied according to type of prescription: 9 days for documented prescription; 8.1 days for empirical prescriptions; 6.3 days for prescriptions according to protocol; and 5.5 days for inappropriate prescriptions (p=0.0001). The interventions reduced the mean duration of therapy: 5.5 days for prescriptions with intervention and 7.6 days for the ones without (p<0.0001). It was found that in 652 prescriptions with microbial isolates, 369 were multidrug-resistant microorganisms (24.1%). Patients who were discharged early with antibiotics for ambulatory care (21.7%) had lower mean duration of treatment (5.8 days) and a lower proportion of multidrug-resistant strains (42.5%) than patients who were discharged without antibiotics (56.6%; 7.7 days and 62.9%) or patients who died (14.6%; 7.1 days; 52.2%) (p=0.0001).

Conclusion Pharmacy-driven interventions could be a strategy for decreasing costs with human resources associated with antimicrobial stewardship due to the effective screening of antibiotics prescriptions. Investment in the surveillance results in early hospital discharge with a shorter length of antibiotic treatment with a consequent decreasing of multidrug-resistant strains.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Exigo Consultores.
No conflict of interest.

4CPS-197 DETERMINING THE NECESSARY COMPONENTS OF A PHARMACEUTICAL CARE COMPLEXITY SCREENING TOOL: AN E-DELPHI STUDY
M Alshakrah*, D Steinke, M Tully, S Williams, P Lewis. University of Manchester, Division of Pharmacy and Optometry, Manchester, UK
10.1136/ejhpharm-2019-eahpconf.346

Background With increased pressure on clinical pharmacy services there is a demand for reliable screening tools to appropriately allocate pharmaceutical care to those patients with most urgent and/or complex needs. Several such tools have been developed, however, they are often locally developed with a lack of agreement on their components. To date, no broad consensual agreement of experts exists on valid components of a pharmaceutical care complexity screening tool in the adult hospital setting.

Purpose To obtain consensus on the necessary components of a pharmaceutical care complexity screening tool for use on admission to hospital.

Material and methods Complexity tool components were identified and refined in three phases: first, a systematic literature review was conducted to identify existing tools and their components. Second, a national survey and semi-structured telephone interviews identified non-published tools and their components. The obtained components from phase I and II were reviewed by the research team and an expert reference group to remove non-clinical factors and duplicates. Third, an expert Delphi panel, including international leading pharmacists, researchers and clinicians, was recruited by email to take part in a two-round Delphi study. Items were scored. The panel were asked to rank each component according to importance via a web-based anonymised electronic questionnaire using a nine-point Likert-scale. Consensus was set at 67%: items that 67% of people deemed to be important were listed. Ethical approval was not required.

Results Forty-one invited experts joined the panel and completed round one, and 33 of them completed the second round. One-hundred and nine of the complexity tool components were initially identified and validated by the panel. After two Delphi rounds, 92 components (84.4%) achieved the limit of agreement for importance. These were grouped into three component types (demographic, clinical-related and medication-related) and reduced to 31 items for inclusion into a screening tool.