were empirical prescriptions, 518 (33.9%) inappropriate prescribing, 489 (31.9%) documented and 258 (16.8%) were according to the protocol approved by the institution. The physician’s acceptance of pharmacy interventions was 52.5%. The mean treatment duration varied according to type of prescription: 9 days for documented prescription; 8.1 days for empirical prescriptions; 6.3 days for prescriptions according to protocol; and 5.5 days for inappropriate prescriptions \((p=0.0001) \). The interventions reduced the mean duration of therapy: 5.5 days for prescriptions with intervention and 7.6 days for the ones without \((p<0.0001) \). It was found that in 652 prescriptions with microbial isolates, 369 were multidrug-resistant microorganisms (24.1%). Patients who were discharged early with antibiotics for ambulatory care (21.7%) had lower mean duration of treatment (5.8 days) and a lower proportion of multidrug-resistant strains (42.5%) than patients who were discharged without antibiotics (56.6%; 7.7 days and 62.9%) or patients who died (14.6%; 7.1 days; 52.2%) \((p=0.0001) \).

Conclusion Pharmacy-driven interventions could be a strategy for decreasing costs with human resources associated with antimicrobial stewardship due to the effective screening of antibiotics prescriptions. Investment in the surveillance results in early hospital discharge with a shorter length of antibiotic treatment with a consequent decreasing of multidrug-resistant strains.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Exigo Consultores.
No conflict of interest.

4CPS-196 ABSTRACT WITHDRAWN

4CPS-197 DETERMINING THE NECESSARY COMPONENTS OF A PHARMACEUTICAL CARE COMPLEXITY SCREENING TOOL: AN E-DELPHI STUDY

M Alshakrah*, D Steinke, M Tully, S Williams, P Lewis. University of Manchester, Division of Pharmacy and Optometry, Manchester, UK

Background With increased pressure on clinical pharmacy services there is a demand for reliable screening tools to appropriately allocate pharmaceutical care to those patients with most urgent and/or complex needs. Several such tools have been developed, however, they are often locally developed with a lack of agreement on their components. To date, no broad consensual agreement of experts exists on valid components of a pharmaceutical care complexity screening tool in the adult hospital setting.

Purpose To obtain consensus on the necessary components of a pharmaceutical care complexity screening tool for use on admission to hospital.

Material and methods Complexity tool components were identified and refined in three phases: first, a systematic literature review was conducted to identify existing tools and their components. Second, a national survey and semi-structured telephone interviews identified non-published tools and their components. The obtained components from phase I and II were reviewed by the research team and an expert reference group to remove non-clinical factors and duplicates. Third, an expert Delphi panel, including international leading pharmacists, researchers and clinicians, was recruited by email to take part in a two-round Delphi study. Items were scored. The panel were asked to rank each component according to importance via a web-based anonymous electronic questionnaire using a nine-point Likert-scale. Consensus was set at 67%: items that 67% of people deemed to be important were listed. Ethical approval was not required.

Results Forty-one invited experts joined the panel and completed round one, and 33 of them completed the second round. One-hundred and nine of the complexity tool components were initially identified and validated by the panel. After two Delphi rounds, 92 components (84.4%) achieved the limit of agreement for importance. These were grouped into three component types (demographic, clinical-related and medication-related) and reduced to 31 items for inclusion into a screening tool.
Conclusion This study systematically and rigorously identified a set of 31 items which are important for assessing pharmaceutical complexity. This information can then be used for the development and refinement of future and current pharmaceutical complexity screening tools that can aid more efficient targeting of hospital clinical pharmacy services.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

4CPS-198 CLINICAL EXPERIENCE WITH DALBAVANCIN IN A TERTIARY HOSPITAL
1M Nuñez Nuñez, 2A Ruiz Sancho, 3M Moya-Martin, 4I Vallejo Rodriguez, 5ÁS Raquel*, 1J Cabeza Barrena. 1Hospital Virgen San Cecilio, UGC Farmacia, Granada, Spain; 2Hospital Campus de la Salud, UGC Enfermedades Infecciosas, Granada, Spain; 3Hospital Universitario Virgen Macarena, UGC Farmacia, Seville, Spain; 4Hospital Campus de la Salud, UGC Farmacia, Granada, Spain; 5Hospital San Cecilio, UGC Farmacia, Granada, Spain

Background Very limited labelled indications have been approved for the newer antimicrobials and extensively drug-resistant gram-positive bacterial infections that are a clinical challenge.

Purpose Data on the clinical uses, efficacy and safety of dalbavancin, a novel lipoglycopeptide, in real life is scarce, thus we sought to describe our clinical experience.

Material and methods Descriptive study of patients treated with dalbavancin from June 2016 to September 2017 in a tertiary hospital in southern Spain.

Results Twenty-two patients were involved. Demographics, microbiology, therapy characteristics, adverse events and clinical outcomes are described in Table 1. Eighty-six per cent were used under off-label indications in patients who had tried and/or failed other therapies.

Conclusion Further evidence beyond labelled indications is urgently needed. Despite the limitations, in our clinical practice, the use of dalbavancin under multidisciplinary antimicrobial stewardship team supervision appears to be a promising, safe and effective option for adult patients who have tried and/or failed other therapies due to multidrug-resistant gram-positive organisms and/or may offer added safety and potential cost reductions.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

4CPS-199 ASSESSMENT OF MEDICATION RECONCILIATION IN CHRONIC COMPLEX PATIENTS
A Andres Rosado*, T Gomez Lluch, S Lorenzo Gimenez, LA Pedraza Cezon. Hospital Universitario del Tajo, Pharmacy, Aranjuez Madrid, Spain

Background Transitions in care put the patients at risk for medication error as a result of poor communication and information loss. Medication reconciliation (MR) was conducted to record the best possible list of all the medications patients were taking upon admission. Reconciliation errors are an important cause of morbidity and have a predominant role in hospitalised patients, specifically in chronic complex patients (CCP).

Purpose To assess a programme of MR at admission and at discharge implemented in a CCP and their degree of acceptance by the physician.

Material and methods A prospective study was made from January to June 2018. All patients that at admission to hospital were classified as CCP were included (palliative patients were excluded). At admission to the hospital, the pharmacist carried out an interview with the patient/guardian, review of clinical history and the patient’s current medication list (PCM).

This complete and accurate list was registered in the clinical history and compared with the PCM registered by the physician. Medication discrepancies were analysed and documented.

A registry was made of all the unjustified discrepancies detected, reconciliation errors, pharmaceutical interventions carried out, type and acceptance. At the time of discharge, the reconciliation report was made consisting of the following information: current treatment of the patient at discharge, interactions and recommendations for the patient.

Results A total of 66 patients’ CCP were admitted (51.5% female and 48.5% male), mean age 84.9 years (±5.9 SD). Fifty-five (84%) patients were reconciled at admission. The mean number of medication lines were 10.7. The following were detected: 54 unjustified discrepancies, and 0.98 medication error/patient (46 omissions, four contraindicated medications, two different doses, one wrong medication and one start medication not prescribed), of which 45 were accepted (83%). At discharge, 41 reports were made (62.1%) and 32 interactions were detected. The rest of the reports at discharge were not carried out due to: 12 (18.2%) were exits during admission and 13 (19.7%) for other reasons.

Conclusion A pharmacist MR is an effective procedure in identifying and resolving medication errors. The degree of acceptance of pharmacists’ interventions by the prescriber was