Knowledge of ongoing problems serves to guide the patient’s follow-up. Monitoring mental health in patients with low fibrosis stage, and the assessment of the ability to undertake usual activities and self-care in patients with cirrhosis should be recommended in the post-treatment setting.

REFERENCES AND/OR ACKNOWLEDGEMENTS
EIPT-VHC project funded by the Spanish Ministry of Health and Carlos III Institute of Health.

Conflict of interest Corporate-sponsored research or other substantive relationships: Regina Juanbeltz has received funding from the Carlos III Institute of Health with the European Regional Development Fund (CM17/00095).

CRITICAL ANALYSIS OF THE INFORMATION AND COMMUNICATION TECHNOLOGIES’ TOOLS MOST USED IN CLINICAL PRACTICE BY THE PHARMACIST

Background The information and communication technologies (ICT) tools are the instruments that allow the pharmacist to evaluate quickly and easily the patient’s therapy identifying potential drug interaction (DI) and medical errors, in order to lead a medication reconciliation (MR).

Purpose Identify the perfect-matching ICT tool in order to lead a MR for patients with chronic kidney disease.

Material and methods Three patients with a pill burden higher than 10 therapeutic units were selected and their therapies were analysed in four (A, B, C and D) pre-selected ICT tools commonly used in the hospital pharmacy. ICT tools were compared, based on the number of drugs that were allowed to be inserted, kind and number of DI that were found such as drug-drug (DDI), drug-food (DFI) and drug-alcohol (DAI). Differences between the tools were analysed.

Results The tool A was excluded due to the limit of up to 10 drugs that can be confronted and does not use data from an international database. For these reasons the study was performed only on the other three tools that allowed the comparison between more than 30 drugs. The tool C consented to identify just DDI, so was excluded, instead with tools B and D DDI and DFI were funded. No tool identified DAI. Tools B and D consented to save the therapy and interaction data sheet, but only tool B allowed the extraction of the data. The chosen software was tool B because it was the only tool that include an alert with information regarding the dosage over that there is a DDI, that was important for patients with chronic kidney disease. Besides that, no tool consented to calculate DI based on the used dosage.

Conclusion The choice of the accurate ICT tool based on the study population is the first fundamental step to start and quickly implement an efficient and appropriate medication reconciliation process.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

THE COST-SAVINGS POTENTIAL OF BIOSIMILAR DRUGS: A BUDGET IMPACT ANALYSIS

M Piras*, C Naddeo, M Bettio, R Draghi, F Venturelli. IRCCS CA’ Granda Ospedale Maggiore Policlinico, Pharmacy, Milano, Italy

Background One of the main possibilities of freeing up resources in the pharmaceutical field is to use biosimilar medicines.

Purpose The aim of the study is to describe the impact on direct purchases of a public hospital in the use of biosimilars with respect to the originator drug for the active substances Rituximab (Ritux), Infliximab (Inflix) and Etanercept (Etan).

Material and methods We analysed the consumption (mg) and the total expense (€) for each drug during a two-year period, from March 2016 to March 2018. We then calculated the total annual amount consumed during the two-year period (X1= tot mg 2016–2017; X2=tot mg 2017–2018) and we obtained the percentage of growth (%Y) and the expenditure expected for the period 2018–2019 (X3):

\[Y\% = (X2 - X1)/X1; X3 = X2 + (%Y) \times X2)]

Of the total number of patients treated with the drugs we calculated the percentage of naive (Ritux: 64%; Etan: 17%; Inflix: 24%) and, in this group, the percentage of patients treated with the originator rather than with their biosimilar (Ritux: 100% originator; Etan: 52% originator, 48% biosimilar; Inflix: 100% biosimilar). Based on the growth rate calculated for each drug and type of patient we had to consider three possible assumptions:

1. Clinicians’ same prescriptive attitude.
2. Treatment of all naive patients with biosimilar or maintenance of the prescriptive attitude for those already treated.
3. Use of biosimilar in both naive and previously treated patients.

Results

Abstract 11SG-039 Table 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>X3 vs X2 (%)</th>
<th>X3 (€)</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infliximab</td>
<td>+19%</td>
<td>€1 34 902</td>
<td>1st assumption</td>
</tr>
<tr>
<td></td>
<td>+3%</td>
<td>€21 952</td>
<td>2nd assumption</td>
</tr>
<tr>
<td></td>
<td>-49%</td>
<td>€3 42 533</td>
<td>3rd assumption</td>
</tr>
<tr>
<td>Etanercept</td>
<td>-16%</td>
<td>€2 19 429</td>
<td>1st assumption</td>
</tr>
<tr>
<td></td>
<td>-18%</td>
<td>€2 48 623</td>
<td>2nd assumption</td>
</tr>
<tr>
<td></td>
<td>-38%</td>
<td>€5 19 064</td>
<td>3rd assumption</td>
</tr>
<tr>
<td>Rituximab</td>
<td>+8%</td>
<td>€1 01 208</td>
<td>1st assumption</td>
</tr>
<tr>
<td></td>
<td>-24%</td>
<td>€2 83 583</td>
<td>2nd assumption</td>
</tr>
<tr>
<td></td>
<td>-42%</td>
<td>€4 96 875</td>
<td>3rd assumption</td>
</tr>
</tbody>
</table>

Conclusion If we assume the complete interchangeability originator-biosimilar we would observe a total saving of €1,375,153 that can be spent on other patients.

REFERENCES AND/OR ACKNOWLEDGEMENTS
http://www.agenziafarmaco.gov.it/content/secondo-position-paper-aifa-sui-farmaci-biosimili

No conflict of interest.