Accordingly, the most common interventions were discontinuation of treatment (60%), switch to oral therapy (20%) and de-escalation (12%). Overall, 14% of errors intercepted were classified as being of moderate severity and 9.4% as serious. A significant reduction in the consumption of quinolones was achieved (from 15.0 to 12.6 defined daily doses/100 patient-days), with no significant change in the consumption of other antibiotics.

Conclusion HIGEA has identified opportunities to optimize antimicrobial use. Future work must aim to incorporate new custom-built clinical rules, including those to alert the need for prompt initiation of antimicrobial therapy.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest,

5PSQ-035 ANALYSIS OF THE MEDICATION TREATMENT OF COMMUNITY-ACQUIRED PNEUMONIA TREATED IN THE COMMUNITY AND HAVING RESULTED IN HOSPITALISATION

1C Trouilleux*, 2H Faure, 3H Poujol, 4G Leguelinel-Blache, 1A Sotto, 1, 3CHU Carémeau, Pharmacie, Nîmes, France; 1CH Cognac, Pharmacie, Cognac, France; 3CHU Carémeau, Service De Maladies Infectieuses et Tropicales, Nîmes, France

10.1136/ejhpharm-2019-eahpconf.468

Background Acute community-acquired pneumonia (CAP) is a widespread infection worldwide, causing many hospitalisations and deaths. The repeated and inappropriate use of antibiotics is the main cause of the emergence of bacterial resistance that can lead to therapeutic dead ends.

Purpose This study assessed the pharmacological management of CAP in community and hospital settings, according to the applicable national standards (NS).

Material and methods This was a retrospective and observational study, performed over 1 year in 13 short-stay wards in a 2,000-bed health facility. The patients included had a CAP previously treated in the community, knowing that each patient could be treated with one or more antibiotic strategies. Two infectious physicians and a senior clinical pharmacist analysed the compliance of antibiotic orders to NS for the medication choice (M), the medication dosage (P) and the treatment duration (D).

Results A total of 204 patients were included. The rates of patients with at least one non-compliance were 67.9% and 45.9% respectively in the community (n=187) and hospital (n=181). The antibiotic therapies were non-compliant to NS for 44.5% on M (n=238 antibiotic therapies), versus 33.2% (n=226) respectively in the community and hospital, 20.6% on P (n=218) versus 4.9% (n=226) and 30.6% on D (n=206) versus 19.0% (n=216). In the emergency department (n=47), 23.8% and 6.1% of antibiotic orders were non-compliant for M and P, respectively.

Other works published in the literature on the rate of intra-hospital nonconformities present results similar to ours. This innovative study (hitherto never performed in the outpatient sector in France) reminds us of the importance of respecting the recommendations for optimal recovery of patients with CAP, avoiding multiple re-hospitalisations and preserving the efficacy of the existing antibiotic arsenal.

Conclusion Non-compliance to NS for antibiotic therapies can be explained by the multiplicity of prescribers, a lack of communication, a difficult access to clinico-therapeutic recommendations, microbiological information and medical imagery tests.

REFERENCES AND/OR ACKNOWLEDGEMENTS

http://www.fda.gov/Drugs/DrugSafety/ucm489676.htm
No conflict of interest.
There is an urgent need to strengthen continuous training and to set up better coordination of care between community and hospital health professionals.

REFERENCES AND/OR ACKNOWLEDGEMENTS
http://ansm.sante.fr/var/ansm_site/storage/original/application/b33b6936699f3fe0fa0d07516e40a0734.pdf
No conflict of interest.

5PSQ-036 POLYPHARMACY AND DEPRESCRIBING IN HIV-INFECTED ELDERLY POPULATION
S Gallardo*, J Pardo, P March, G Garreta, C Sangrador, J Nicolás. Hospital Universitario Mutua Terrassa, Pharmacy, Terrassa, Spain
10.1136/ejhpharm-2019-eahpconf.469

Background Human immunodeficiency virus (HIV)-infected elderly population (IEP) must become a deprescribing critical group due to premature aging and high risk of age-related comorbidities and drug interactions.

Purpose To measure the prevalence of polypharmacy in HIV-IEP with antiretroviral therapy (ART). To analyse the need to introduce a deprescribing procedure in pharmaceutical care.

Material and methods An observational, descriptive, transversal study was carried out in April 2018 in a 2 60 000 healthcare area hospital.

All HIV-IEP (over 50 years) with active ART were included. Polypharmacy grades were defined as low (concomitant use of 6–10 medications), medium (11–20) and high (over 21), ART included.

Recorded variables: demographics (sex, age) and pharmacological (number of concomitant prescribed drugs (ART included) and polypharmacy grade). Data were obtained through electronic prescribing, medical records and the Landtools outpatient drug dispensation database.

A review of inappropriate chronic drugs in polymedicated VIH-IEP was carried out in order to prevent risk of falls, fractures, confusion, dementia, hospitalisation and mortality.

Drugs included: anticholinergics, long-term antidiabetic agents (sulfonylureas), first-generation antihistamines, antipsychotics, bisphosphonates, cholinesterase inhibitors (CI), nonsteroidal antiinflammatory drugs (NSAIDs), opioids (oxycodone), proton pump inhibitors (PPIs), sedative-hypnotics, selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TA).

A descriptive statistical analysis was carried out with mean and standard deviation for quantitative variables including absolute and relative frequencies, via SPSS v.24 software.

Results Two-hundred and thirty-seven patients were included, 66.6% males, median age 57 years (50–81).

The concomitant prescribed medication average was 8.4 ±2.5: 80.0% presented low-grade polypharmacy, 20.0% medium-grade and zero high-grade.

Inappropriate chronic drugs were found in 77.8% of the polymedicated group. Frequency distribution: 42.2% SSRIs, 37.8% PPIs, 22.2% sedative-hypnotics, 17.8% anticholinergics, 15.6% NSAIDs, 13.3% TA, 6.7% sulfonylureas, 6.7% antipsychotics and 2.2% oxycodone. No antihistamines, CI or bisphosphonates treatments.

Conclusion Despite the high rate of polypharmacy, it is lower than results observed in other studies (POINT study). Our population shows a low-grade polypharmacy and a high incidence of inappropriate chronic drugs. Results prove the necessity to implement a deprescribing procedure in this group of patients.

REFERENCES AND/OR ACKNOWLEDGEMENTS

5PSQ-037 ANALYSIS OF HUMAN IMMUNODEFICIENCY VIRUS POSTEXPOSURE PROPHYLAXIS IN A THIRD-LEVEL HOSPITAL
C Estaun*, I Moya-Carmona, E Sánchez-Yaínez, JM Fernández-Ovies. Hospital Virgen de la Victoria- Málaga, Pharmacy, Málaga, Spain
10.1136/ejhpharm-2019-eahpconf.470

Background The World Health Organisation recognises the need to improve uptake and completion rates for postexposure prophylaxis (PEP).

Purpose To analyse PEP dispensed by the pharmacy service to patients after an occupational (OE) or nonoccupational (NOE) exposure to the human immunodeficiency virus (HIV).

To compare usual clinical practice in our centre for PEP to European acquired immune deficiency syndrome (AIDS) Clinical Society guidelines.

Material and methods A descriptive, observational and retrospective study performed in a third-level hospital regarding PEP dispensed from January 2015 to March 2018. The following data were retrieved from an electronic prescription program management tool (outpatients’ clinical module) and electronic clinical records: sex, age, year, time from exposure, nature of exposure (sexual contact (SC) vs blood contact (BC)), OE vs NOE, service of the prescribing doctor, antiretroviral drugs (AD) prescribed, following monitoring in outpatient visit, positive infection detected after PEP, further episodes of PEP and positive infection nowadays.

We reviewed the current version of the European AIDS Clinical Society guidelines.

Results Current guidelines recommend 4 week treatment with AD after OE or NOE as early as possible (no later than 48/72 hours). PEP regimen: emtricitabine/tenofovir disoproxilfumarato (FTC/TDF)+raltegravir (RAL) or darunavir/ritonavir (DRV/r) or lopinavir/ritonavir (LPV/r). Re-evaluation of PEP indication by HIV experts is recommended within 48–72 hours.

Clinical records of 57 patients were analysed: distribution per year 2015 24.5% (n=14), 2016 33.3% (n=19), 2017 33.3% (n=19), 2018 8.7% (n=5). Median age 29.9 years, 77.2% (n=44) males. Time from exposure <72 hour in 66.6% (n=38) of patients. Nature of exposure SC 61.4% (n=35), BC 14% (n=8), rest unknown. NOE 77.2% (n=44). Preventive medicine doctors prescribed 78.9% (n=45) of PEP, emergency room doctors 14% (n=8), and infectious diseases doctors 7% (n=4). AD prescribed were: elvitegravir/cobicistat/DRV/r or lopinavir/ritonavir (LPV/r). Re-evaluation of PEP indication by HIV experts is recommended within 48–72 hours.

Clinical records of 57 patients were analysed: distribution per year 2015 24.5% (n=14), 2016 33.3% (n=19), 2017 33.3% (n=19), 2018 8.7% (n=5). Median age 29.9 years, 77.2% (n=44) males. Time from exposure <72 hour in 66.6% (n=38) of patients. Nature of exposure SC 61.4% (n=35), BC 14% (n=8), rest unknown. NOE 77.2% (n=44). Preventive medicine doctors prescribed 78.9% (n=45) of PEP, emergency room doctors 14% (n=8), and infectious diseases doctors 7% (n=4). AD prescribed were: elvitegravir/cobicistat/DRV/r or lopinavir/ritonavir (LPV/r). Re-evaluation of PEP indication by HIV experts is recommended within 48–72 hours.

Preventive medicine doctors prescribed 78.9% (n=45) of PEP, emergency room doctors 14% (n=8), and infectious diseases doctors 7% (n=4). AD prescribed were: elvitegravir/cobicistat/DRV/r or lopinavir/ritonavir (LPV/r). Re-evaluation of PEP indication by HIV experts is recommended within 48–72 hours.

Conclusion PEP is more frequently prescribed in young males after NOE by SC, and in our centre is not uniform regarding prescribing doctor, AD used or subsequent monitoring of patients.

Our clinical practice differs from European guidelines in AD use and patient monitoring. In order to comply with those guidelines, we will implement a protocol to optimise PEP prescription and patient follow-up.