Purpose To develop and implement a tool for regulatory audits and identify case studies from these audits to recommend improvements in patient safety.

Material and methods The method is based on retrospective analysis of 512 audit reports and interviews with 12 pharmacists to develop an audit tool for regulatory audits. The audit consisted of a documentation phase that entailed the identification of deficiencies related to regulatory requirements and an observation phase for the provision of pharmaceutical care provided by the pharmacist. Interactive educational discussions with the practising pharmacists identified desirable patient-related improvements. Seven case studies on the identified deficiencies related to patient safety were addressed.

Results The tool was applied in 85 audits (January–November 2017). Opportunities for improvement related to patient safety were identified and addressed in seven case studies namely: four dispensing problems (errors, near misses, lack of proper prescription, unsupervised pharmacy staff); two inventory deficiencies (expired items, inappropriate storage temperature); and one equity of treatment between private and government-sponsored patients. Concordance with the pharmacist was reached and 46 corrective and preventive actions were taken to address the deficiencies. Examples of actions identified included: development of standard operating procedures, such as for temperature monitoring; implementing precautions to avoid dispensing errors especially for cytotoxic and high-alert medicines, such as labelling of shelves and implementing methods of alert for ‘sound-alike’, ‘look-alike’ and ‘written-alike’ medicines; ensuring double-checking before dispensing; and performing routine stock rotation to prevent dispensing of expired medicines.

Conclusion A tool was developed, validated and implemented for regulatory audits. Follow-up audits confirmed that an approach that emphasises on reaching concordance with the pharmacist through identifying opportunities for improvement, rather than non-compliance, improves pharmacist motivation, patient safety and care outcomes. Future studies may include the harmonisation of actions across all pharmacy services.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Nil.

No conflict of interest.

5PSQ-108 PROCEDURE FOR PEDIATRIC EMERGENCY AND RESULTS OF A SURVEY ON USE

I Barbuto*, B Esposito, V Cristiana, Aos Dei Colli, Farmacia, Napoli, Italy

Background In 2018 Campania reorganised the regional hospital network, therefore our hospital was identified as the Zone Trauma-Centre and the Emergency Medicine Unit has been established with general first aid. The pharmacy has developed diagnostic therapeutic routes including that for paediatric emergency, with the aim of optimising assistance, especially for those cases with infrequent access.

Purpose To describe the process developed and the improvements made in clinical practice verified through a survey.

Material and methods The Broselow method was used for a rapid selection of devices and drug dosages. It uses a colorimetric visualisation tape based on weight and height, and provides indications for shock, cardio-respiratory arrest and respiratory failure. The weight and height identified on the tape provide, translated into colour code, measures of endotracheal tubes, catheters, drainage, needles, tubes, dosage of drugs, indications for ventilation, and tables with vital signs divided by age and severity scores. We organised a first aid area by dividing the devices into boxes whose colour matched the one identified by the tape, with the aim of quickly identifying what was required to help the children during the

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
emergency. We have instructed the doctors and nurses on how to use the tape. Six months after the start of use, we gave a questionnaire to 11 doctors and 42 nurses to see if they found the system easy to manage and safe.

Results Of 53 participants interviewed, 38 (72%) found the Broselow easy or very easy, 43 (82%) reported that the material for intubation and insertion of the naso-gastric tube was quickly found. Forty-seven (89%) stated that the detection of dosages was very easy and 52 (99%) reported that the method involved greater safety.

Conclusion The results indicate that despite progressive aging, focusing on the paediatric population is a deeply felt need. It is essential to be sensitive to the recording of near misses and errors through incident reporting and implement procedures that make it possible to standardise behaviours and the use of appropriate resources. The clinical pharmacist is an integral part of this path as it helps to make the patient’s hospitalisation safer and directs the staff towards more effective and appropriate choices.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.