were mapped together with the control strategy in the proposed assessment sheet. This assessment sheet is considered to also be useful for the life-cycle management of the drug substance.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Dr Mamouni Alaoui Faïcal.
No conflict of interest.

5PSQ-113 HOW TO SECURE MEDICATION SELF-MANAGEMENT IN HOSPITALISED POSTPARTUM WOMEN?
H Benoist*, I Goyer, G Saint-Lorant. Caen University Hospital, Pharmacy, Caen, France
10.1136/ejhpharm-2019-eahpconf.546

Background A first preliminary study conducted in 2017 among the mothers of a postpartum unit showed that 82% of medication administrations were not traced in the electronic medical chart. In this unit, for women postvaginal delivery only, midwives ensure patient management and prescribe basic pain medication, which are self-managed by the mother. These results reveal the insufficient traceability of self-managed medication in the postpartum unit.

Purpose To evaluate the professional practices of midwives before and after implementation of medication safety procedures by pharmacists.

Material and methods The first round of the audit took place in January 2018. The postpartum unit is divided into four 12-bed sectors and there are 18 midwives working 12 hour shifts. The main criteria evaluated was bedside pillboxes agreement with prescription and computerised traceability of self-administrations. All mothers systematically have the postvaginal delivery analgesia protocol prescribed and their individual chronic treatment if applicable. A mandatory computer commentary was added on the prescription software to be filled in by midwives every 12 hours at pillbox change to allow for twice-daily traceability of self-administered medication. At the same time, a medication safety action plan, including midwives’ awareness to medication errors, was implemented. Following the implementation of safety procedures, a second audit round was held in September 2018.

Results The first audit round involved 16 patients and revealed that 69% of pillboxes were in agreement with prescription. Prescription was computerised for 25% of non-protocol medications. Regarding medication administration, 25% of non-protocol administrations were traced, whereas 12.5% of protocol analgesics were. No medication administration was traced in real-time. The second audit including 11 patients, revealed that 100% of pillboxes were in agreement with the prescription. The prescription was computerised for 100% of non-protocol prescriptions. Ninety per cent of non-protocol medication administrations were electronically traced in real-time as were 75% of the per protocol analgesic administrations.

Conclusion These pharmacist-led medication safety actions made it possible to ensure safe self-management of postpartum treatments by mothers. Pharmacists’ involvement also helped meet the requirements of the French National Health Authority for the traceability of medication administration and medication self-management.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

5PSQ-114 EVALUATION OF PHARMACEUTICAL INTERVENTIONS PERFORMED ON MEDICATION ERRORS DETECTED IN THE PRESCRIPTION
10.1136/ejhpharm-2019-eahpconf.547

Background Pharmaceutical validation consists in verifying medical prescriptions (dosage, route of administration, pharmaceutical presentation) and checking the suitability of treatment in the approval indications, patient characteristics and domiciliary medication.

Purpose To analyse the pharmaceutical interventions (PI) performed in the hospital and measure the degree of acceptance.

Material and methods Prospective study that included all the PI performed during 3 months of follow-up (January to March 2018). Pharmaceutical interventions were realized through notes by the pharmacist in the electronic prescription. Clinical information was obtained from electronic clinical history with CernerMillenium. Interventions made in medication errors were selected for the study and registered in an Excel book for analysis. Variables collected: type of intervention, drug, therapeutic group, acceptance or rejection, and time of acceptance. Time to consider the PI accepted was 48 hours since the recommendation.

Results During the period of study there were 611 PI. These were classified into different types of intervention: dosage mistakes (288), duplicities (129), wrong pharmaceutical presentation (43), sequential therapy (31), antibiotic recommendation according to the antibiogram (29), conciliation of pharmacotherapy at admission (22), interactions (22), non-indicated drug (22), allergies (21) and route of administration (seven).

Dosage mistakes interventions (288) included: overdosing (127), underdosing (13), recommendation of renal insufficiency adjustment (141) and hepatic insufficiency adjustment (seven).

From 611 PI, 275 were accepted, 226 rejected and 110 null because the patient received medical discharge during the evaluation period. The global acceptance was around 54%. Results of acceptance for different types of intervention were: allergies 71%, recommendations of anti-infective therapy-adjusting treatments with the antibiogram results 70%, duplicates 70%, non-indicated drug 60%, interactions 53%, wrong pharmaceutical presentation 50%, dosage mistakes 50%, conciliation of pharmacotherapy at admission 44%, sequential therapy 41% and wrong route of administration 33%. Evaluating the acceptance into categories of dosage mistakes: overdosing 57%, underdosing 38%, renal insufficiency 45% and hepatic insufficiency 29%.

Conclusion Many medication errors occur that must be detected and corrected. The rate of acceptance is lower than expected, so it is important for pharmacists to specialise in different areas of knowledge to perform high-quality pharmaceutical interventions that can help physicians in electronic prescription and improve the safety of patients.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.