market situation. This is significant since there is currently no reliable central database in Germany which lists DS in time. The kind of DS in the hospital setting demands a rapid and focused management in order to ensure continuity of care. **Purpose** Our aim was to develop a method to provide internal transparency over DS affecting our clinic (a 1600-bed maximum acute care facility), to cooperate with the physicians for a proper and efficient decision flow, and to adapt correspondingly to the drug-supply chain (DSC).

Material and methods We created a colour-coded algorithm on how to react to DS, depending on certain factors:

1. Yellow/orange: Therapeutic alternative is available. Consider brief information for the affected units.
2. Red: Therapeutic alternative is available but with relevant changes (e.g. import, internal compounding in the pharmacy), there is a very limited supply or no drug left at all. Consider interprofessional consultation.

The information was handed out by our drug information department via a drug-information sheet.

The data was recorded in an EXCEL sheet and updated upon each report from the manufacturers. Moreover, relevant changes had to be made depending on the classification of the DS (e.g. master-data-management, ward-order-system, Kanban-system, handling instructions) in order to ensure the DSC. **Results** Between 1 January 2018 and 30 June 2018, 273 DS were recorded. Existing DS from 2016/2017 (38) were also included. One-hundred and seventy were resolved by 1 July 2018. Sixty-two were classified as red (critical or threatening to patient safety), 22 of which led to an interprofessional consultation. There was no alternative at all for five DS. Each consultation lasted 1 hour on average. Twenty-two of the recorded DS did not affect our clinic due to length and sufficient stock.

Conclusion The situation in everyday practice is so complex that standard procedures and interdisciplinary communication paths are necessary to manage DS in a way that does not impact the quality and continuity of patient care. Therefore, restrictions on therapeutic alternatives need to be determined and the close collaboration among pharmacists, nurses and physician is inevitable.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No references.

No conflict of interest.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No references.

No conflict of interest.

2SPD-016 BIOSIMILARS OF INFLIXIMAB AND RITUXIMAB: DOES THE INITIAL STRATEGY OF SELECTION HELP THEIR PRESCRIPTIONS?

C. Boyron*, L. Maljean, M. Saglio, AS Leromain, C. Jarre, M. Hellot-Guésing, A. Gadot, C. Derharoutian, R. Rouillère. Centre Hospitalier Lucien Hussel, Pharmacy Department, 38200 Vienne, France

10.1136/ejpharm-2019-eahpconf.56

Background The development of biological medicines (BM) was a major step in the treatment of chronic diseases and cancer. However, their high costs are a financial issue for hospitals. The arrival of biosimilar drugs (BD) improved their accessibility by reducing their prices. Nevertheless, in France, their consumption is still low. **Purpose** The purpose of the study was to measure and analyse the penetration rate (PR) of biosimilar Infliximab and biosimilar Rituximab in hospitals containing 300 to 700 beds in Auvergne Rhône Alpes (France).

Material and methods A web survey was sent to hospital pharmacists dispensing Infliximab and/or Rituximab to collect: consumption of Infliximab and Rituximab (biological reference products (BRM) and BD) in the first 6 months of 2018; initiation and switching strategy of BD; and education tools provided by pharmacists to patients and/or healthcare professionals. The PR was defined as the percentage of biosimilars of the total of BM. The web survey was online for 1 month.

Results Seven hospitals replied to the survey: all were consumers of Infliximab and four were consumers of Rituximab. The PR of biosimilar Infliximab was around 50% for two hospitals, around 30% for three hospitals and two hospitals did not use BD. The seven hospitals adopted the same initiation and switching strategy: biosimilar Infliximab was prescribed only for BM-naïve patients and continuous therapy could be switched with doctor’s agreement.

Concerning Rituximab, the PR was 100% for two hospitals, 70% for one hospital and 40% for one hospital. All four hospitals concerned reported using the same strategy: switch from the BRM to the BD for every patient. The recent introduction of Rituximab biosimilar in the French market could explain the 2 PR lower than 100%.

Concerning education provided by pharmacists about BD, all had a different strategy (education to patient, to doctor, presentation in drug committee...).

Conclusion Although these hospitals adopted the same strategy of biosimilar selection, the PR were significantly different from one hospital to another. None of the education tools provided was linked to a greater biosimilar penetration. The consensus of national societies and expert recommendations should help pharmacists to convince prescribers.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
Results After analysing the new offers, provider B proposed separate needle references for cytological and histological diagnostic and for therapeutic drainage. Conversely, supplier A offered three sizes of the same model allowing these three functions. Finally, supplier C was not selected because of its higher quotation without any particular technical advantage. Subsequently, three specimens from A and B were evaluated on six patients.

These trials revealed four criteria differentiating needles A and B: quality of packaging, echogenicity, penetration of the needle and quality of the sample. Indeed, needle A displayed soft packaging offering a lesser protection, a lesser echogenicity and a lower sampling quality despite better penetration. The responsible gastroenterologist, aiming to use this technique mainly for diagnosis, therefore chose the needles of supplier B. The final marks were 16.56/20 for supplier B, 16.19/20 for supplier C and 16.00/20 for supplier A.

Conclusion The difference in the quality of the samples may be linked to needle B fenestration which allows the obtaining of a larger core at the expense of a weakening of the needle, and a decrease in the case of penetration. Thanks to a tight partnership with the medical team during these tests, pharmaceutical involvement helped to optimize the sourcing of a new product and the deployment of a new activity.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

2SPD-018 AUDIT ON THE MANAGEMENT OF PERSONAL TREATMENT OF PATIENTS AT THE HOSPITAL
C Bons*, H Roux, MP Ponrouch, N Deshormiere, C Breuker, A Jalabert. CHU Montpellier, Pharmacy Center, Montpellier, France
10.1136/ehjpharm-2019-ehahpconf.58

Background The management of personal medical treatments of patients hospitalised in health facilities follows regulatory requirements. Failure to respect these requirements may result in iatrogenesis, with sometimes severe consequences for the patients. According to the High Authority of Health, not taking into consideration the personal treatment might lead to administrative mistakes which represent more than 57% of reported medication errors. In order to prevent these errors, a procedure and a technical data sheet have been designed to assist caregivers in the management of these medical treatments.

Purpose The objective is to evaluate the caregiver’s level of knowledge of which documents in order to suggest ways of improvement.

Material and methods This audit has been realised in order to assess how the medical staff follow these technical data sheets. The audit has been performed by a pharmacist student during 2 months, in eight randomly chosen services. An audit grid including 15 evaluated criteria was used.

Results For this audit, 138 hospitalised patients were followed. At the time of their hospitalisation, 83.7% of the patients had personal treatment at home. Only 18.7% of these patients had their personal treatments prescribed in the hospital’s computer software. Regarding the management of these treatments, 47% of the wards had removed the personal treatment at the hospitalisation of the patients, and 38% identified and stored the treatments in a specific and secure place as indicated in the procedure.

Seventy per cent of the patients actually took their treatment, while this fact had not been indicated in the prescription software by the responsible doctor. Regarding leaving the hospital, out of 10 outgoing patients, 54% left with a prescription including the updated personal treatment.

Conclusion This audit allowed us to identify several problems, the lack of knowledge of the documents and insufficient training on computer software of the medical staff. Improvements are now being developed through communication campaigns concerning the data sheet and through training on the prescription software. A future assessment will be conducted to verify that the actions taken have had a positive effect.

REFERENCE AND/OR ACKNOWLEDGEMENTS
Patients personal treatment management in hospital: practices analysis and improvement opportunities. J Pharm Clin 2015;34.
No conflict of interest.