Background Medication errors lead to higher morbidity, mortality and expenditure. The likelihood of mistakes is higher in the Emergency Department (ED).

Purpose To determine the incidence, the type of discrepancies and reconciliation errors (RE) upon admission to an ED, and the drugs involved.

Material and methods Prospective observational study, including patients admitted to the ED pending hospitalisation, during a period of 3 weeks (9–27 April 2018). The variables collected were: sex, age, number of home medications, number of discrepancies justified by the patient’s clinical evolution (DJ) and not justified requiring clarification (DNJ), type of RE detected according to the Consensus Statement of the Spanish Society of Hospital Pharmacy and drugs involved. Programme coverage indicator, quality prescription indicators and medication reconciliation process indicators were calculated. The medication reconciliation process (MRP) was carried out through a clinical interview with the patient/carer, and the data obtained from the electronic clinical history and the primary care electronic records.

Results MRP was performed in 61 of the 216 patients admitted (coverage rate of 28.24%). 55.74% were males, with an average age of 70.61±14.86 years (72.13%>65 years). The median of home medications was 8 (range 1–18). Ninety-three discrepancies were detected, of which 22.58% were DJ, while the remaining 77.42% were considered DNJ. The quality indicators of the prescription were determined, obtaining the following results: 57.38% patients with RE, 42% medications with RE and 1.20 RE per patient. Regarding quality indicators of the MRP, the detected RE were 58.33%, and were classified into: 37 (88.10%) medication omissions, four (9.52%) dose errors, and one (2.38%) wrong medication. The drugs involved were: 19 (45.24%) lipid modifying agents, five (11.90%) antiepileptics, four (9.52%) thyroid hormones, four (9.52%) drugs used in benign prostatic hyperplasia, two (4.76%) antipsychotics, two (4.76%) anti-glaucoma drugs and miotics, two (4.76%) insulins and analogues, one (2.38%) beta-blocking agents, one (2.38%) digitalis glycosides, one (2.38%) organic nitrates and one (2.38%) vitamin D and analogues.

Conclusion The RE affected more than half of the patients admitted to the ED. The most prevalent discrepancy was the omission of medication and the drugs most implicated were statins.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
fatal consequences. Missing dependent and independent controls regarding concentration and identity pose a risk for patient safety.

Purpose We developed a concept for a two-stage quality control of the infusion solutions. Drug identity and concentration can be checked onsite after preparation using a combined UV- and Raman spectrometer (UV-Raman). This is complemented by an independent method using liquid chromatography coupled to UV detection (HPLC-UV).

Material and methods Methods for the analysis of seven cytostatic drugs and two monoclonal antibodies were developed and validated on an i-QCRx UV-Raman system (B and W Tek Europe GmbH, Lübeck, Germany) and on an Agilent 1200 series HPLC-UV system (Agilent Technologies, Waldbronn, Germany). Sample transport and preparation were evaluated to ensure valid results. In a pilot study we analysed samples from different pharmacies in both systems.

Results Method development and validation were successful for the investigated compounds in both systems. HPLC-UV is more sensitive than UV-Raman. However, due to the content of the preparations, real samples had to be diluted before applying HPLC-UV analysis. Sensitivity of the UV-Raman spectrometer fits to the required concentration range without further dilution. All methods showed reproducible results, UV-Raman varied by 0.44% in a repeated analysis (n=3) of 5-fluorouracil, while HPLC-UV varied by 0.14%. Results of the investigated samples were also equivalent. In a sample containing paclitaxel with a target concentration of 0.72 mg/mL, we determined 0.73 mg/mL (101%) using UV-Raman and 0.69 mg/mL (96%) using HPLC-UV, for example.

Conclusion UV-Raman and HPLC-UV are suitable for determining the content of patient-individual preparations, both with individual assets and drawbacks. The study showed that the two-stage control concept is appropriate to ensure a high-quality level for patient-individual preparations.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

Section 6: Education and Research

6ER-002
Efficacy of a fixed-ratio combination of insulin degludec and liraglutide in the treatment of type 2 diabetes mellitus

1V Ožara*, 1M Frydrych. 1Hospital with Polyclinic Karina-Raj, Orlawa City Branch, Pharmacy, Orlawa, Czech Republic, 2University of Veterinary and Pharmaceutical Sciences Brno, Department of Human Pharmacology and Toxicology- Faculty of Pharmacy, Brno, Czech Republic.

Main outcome measures: Maternal outcomes: Mode of delivery, gestational age at diagnosis and gestational age at delivery. Neonatal outcomes: APGAR score: 1 min, 5 min and 15 min: birthweight in g and NICU admission.

Results None of the patients had a history or concurrent diagnosis of other hepatic or biliary disease. A small proportion of both the high-dose and low-dose study population had histories of ICP in previous pregnancies: three in the high-dose group and two in the low-dose group. The mean bile acid level upon diagnosis was 19.7 mmol/L in the high-dose group paralleled to 17 mmol/L in the low-dose group. Other maternal and neonatal outcomes will be presented in the poster.

Conclusion This study failed to detect or prove the difference in the maternal and neonatal clinical outcomes between the UDCA high- and low-dose groups.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.