lower costs directly related to the method (-€ 1,371.16), however associated hospitalisation costs were higher due to longer hospitalisation (5 days versus 4 days).

Conclusion Even though CRB is an effective method to induce labour at a lower cost than Propess in our pilot test, a longer hospitalisation length was observed with this device. Further studies are needed to evaluate the efficacy, safety and all direct costs involved in these techniques and also considering other available methods.

REFERENCES AND/OR ACKNOWLEDGEMENTS
None.
No conflict of interest.

2SPD-020 EXPIRED MEDICINES AND MEDICAL DEVICES, AN ACROBATIC MANAGEMENT
S Cayeux*, A Durand, M Moreau, C Vantyghem, M Belhout. CHU Amiens Picardie, Pharmacy, Amiens, France
10.1136/ejhpharm-2019-eahpconf.60

Background The supply of health products is a major activity for hospital pharmacists. Its complexity is based on the need to hold sufficient stock at a reasonable cost while avoiding over-stocking of products and therefore money. In our institution, various systems were established to prevent expired medicines such as automated drugs distribution systems with distribution according to the best before date or the first-in first-out principle managed by a warehouse management system. Nevertheless, some drugs and medical devices expire each month.

Purpose The aim of this work has been to identify the factors responsible for the lapse in order to optimize inventory management.

Material and methods From May 2016 to July 2018, we had identified the products (name, quantity, price) removed from the stock due to lapsing in our hospital pharmacy. For each of them, we had researched the reason for expiration, and we have proposed a solution to optimize stock management.

Results Three-hundred and thirty products have been thrown away, which have represented € 1 70 149 (€ 1 44 761 excluding refunds by suppliers). The causes encountered have been: no regular consumption (90 products; 8% of expenses); termination of use (79; 31%); products returned from services (39; 2%); emergency drugs such as antidotes (39; 27%); inadequate management of stocks (36; 8%); and other causes (47; 24%).

The two main corrective actions have been procurement inactivation (30% of cases) and decrease in security threshold (28%).

For 28% of the products, particularly pharmaceutical preparations and emergency drugs, ordering recommendations have been maintained.

Conclusion The cessation of needs represents the main item of expenditure, but one product is responsible for half of this cost (24 units at € 1100 each). The amount of expenditure is probably underestimated because the price of pharmaceutical preparations (28 cases) was not charged. Having optimised the settings seems to be efficient because there is no lapse redundancy except for the little-used products for which a minimal stock must be maintained. Optimising the stock is a long term-job which requires the contribution of several stakeholders such as buyer pharmacists, supply and logistic responsible and consumers.

REFERENCES AND/OR ACKNOWLEDGEMENTS
None.
No conflict of interest.

2SPD-021 NONCOMPLIANCE OF DATAMATRIX CODES, AN OBSTACLE TO IMPLEMENTATION OF THE FALSIFIED MEDICINES DIRECTIVE
S Cayeux*, A Durand, JF Boutigny, C Vantyghem, M Belhout. CHU Amiens Picardie, Pharmacy, Amiens, France
10.1136/ejhpharm-2019-eahpconf.61

Background To reduce counterfeit drugs, the serialisation will become mandatory on 9 February 2019. A DataMatrix code will be used to encode each secondary packaging.

This 2D barcode makes it possible to indicate an important number of traceability data in a small area. The technical characteristics of DataMatrix codes were defined in standard ISO/CEI 16022:2006.

Our university hospital is equipped with an automated storage and dispensing system of drugs. Unfortunately, this automat is not able to read the totality of Datamatrix codes. This obliges us to store manually in the automat the products concerned, which increases the duration of reception and the labour cost.

Purpose The purpose of this work is to identify the medicines for which the datamatrix code cannot be read by the automat and the causes of this problem.

Material and methods In our hospital, a total of 2107 references need to be serialised, including 1252 references stored in our automat.

From June 2018 to September 2018, the products concerned by the impossibility of reading the codes, the laboratories involved and the causes of illegibility were compiled.

Results During the period of collection, 107 products from 23 providers have presented a problem of legibility.

This represented 8.5% of products stored in the automat.

The problem has always been the black colour of the background.

Conclusion Only one case of noncompliance was identified, but we should note that our enquiry is not a comprehensive collection of data because we did not receive all the medicines referenced during the mentioned period.

We imagine that other problems could be encountered such as too small Datamatrix codes or shiny backgrounds.

A solution could be the change of reader heads of our automat but this represents an important investment.

The second part of this work will consist in collaboration between pharmacist buyers, pharmaceutical laboratories and equipment manufacturers to encourage the standardisation of the datamatrix codes in order to facilitate compliance with the Falsified Medicines Directive.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Thank you to storekeepers.

No conflict of interest.

2SPD-022 ON THE ROAD TO SERIALISATION: A PRATICAL APPLICATION
E Ducret*, E Schwartz, F Plassart, JM Descoutures, JL Pons. Victor Dupouy Hospital, Pharmacy, Argenteuil, France
10.1136/ejhpharm-2019-eahpconf.62

Background The Falsified Medicines Directive (FMD) and the Delegated Regulation (DR) 2016/161 will require, from 9 February 2019, hospital pharmacies to check the authenticity of each medicinal product they receive. Our hospital participates
in a test with the National Medicines Verification Organisation to evaluate possible strategies, compatible with legislation, for the implementation of serialisation.

Purpose The aim of the first test is to evaluate the feasibility of decommissioning of each unique identifier at the reception of medicinal products in the pharmacy.

Material and methods During 14 days (summer 2018), the pharmacy technician scanned the data-matrix of each box received with an Optel certa tabletop (possibility of switching between vertical and handheld scanner). Quantitative indicators (number of boxes received, number of serialised drugs in circulation, products with a non-compliant data matrix) were recorded. The scanning time of each carton was measured and the equipment’s ergonomics evaluated.

Results During the study, the pharmacy received an average of 822 boxes/day (min: 273; max: 1737), of which 90% were in the scope of the FMD and the RD. The average scanning time per pack was 5 s, totalling an average of 56 minutes/day to scan all boxes. Only 3/530 medications displayed a serial number, while three of them (nicardipine, pemetrexed, midazolam) had a non-readable data-matrix (colour inversion) on their packaging and thus could not be scanned. The Optel certa tabletop and its software are considered easy to use. But the manoeuvrability and malfunctions of the handheld scanner contributed to inflate the scanning time.

Conclusion This first test demonstrated the technical feasibility of decommissioning boxes on their reception in real working conditions. The connection to the National Medicines Verification System was not effective during the test, so the upload time between interfaces could not be evaluated. The imposing equipment leads to opting for mobile and compact scanning devices. Decommissioning at reception confronts us with equipment leads to opting for mobile and compact scanning devices. Quantitative indicators (number of boxes received, number of serialised drugs in circulation, products with a non-compliant data matrix) were recorded. The scanning time of each carton was measured and the equipment’s ergonomics evaluated.

REFERENCES AND/OR ACKNOWLEDGEMENTS

- Falsified Medicines Directive.
- Delegated Regulation 2016/161.
- None.

SPD-024 IMPLEMENTED STRATEGIES TO SOLVE MEDICINES SHORTAGES

MD Toscana Guzmán, MDR Mora Santiago, C Estain*, I Moya Carmona, E Aguilar del Valle, JM Fernandez Ovies. Hospital Universitario Virgen de la Victoria, Servicio Farmacia, Malaga, Spain

Purpose To highlight the advantages of the Consignment Inventory Management (CIM) of joint prostheses in hospitals.

Material and methods In order to demonstrate the organisational interest of the understanding of documents as well as the economic interest that present the CIM of joint prostheses, we have analysed the circuit of articular prostheses at our hospital since their acquisition until their implantation in the patient.

Results The choice of prostheses component’s size depends on the anatomical and physiological conditions and also on the age and activity of the future operated patient. As a result, the conventional acquisition of different sizes of each prostheses component has become obsolete. The CIM, which consists in making available, for a contractually defined period, different sizes of the same prostheses components (which remain the property of the supplier until their use in the patient) is an excellent alternative. This mode of replenishment at the request of the consumed size allowed a better control of availability, expiry dates and traceability.

At the economic level, it allowed us to save about €1.7 million per year (on an overall joint prostheses annual budget of €9.9 million) compared to the classic supply.

Conclusion The CIM based on the automatic replenishment of the consumed parts, combined with controlled traceability, helped the optimisation of expenses, avoiding breaks and ensuring the proper monitoring of these implantable medical devices at our hospital.

REFERENCES AND/OR ACKNOWLEDGEMENTS

- None.
- No conflict of interest.