national health authorities and several laws govern this notion since the beginning of the 2000s. In our hospital, 34 patient education programmes exist but only five integrate a pharmacist into their team.

Purpose The main objective of this qualitative research is to understand why pharmacists are so few in patient education teams by studying the perception of other health professionals on the work of pharmacists. Then, we could propose several solutions to make easier the integration of pharmacists into these multidisciplinary healthcare teams.

Material and methods Semi-structured interviews were planned with the healthcare professionals involved in the educational teams where there are no pharmacists. After a word-by-word anonymous transcription, verbatimis were coded in the software Nvivo 12 (QSR International; Melbourne, Australia) by two pharmacists trained in qualitative research in order to minimise the subjectivity of this work.

Results Fourteen healthcare professionals had been interviewed: six nurses (among whom three executive nurses), four physicians, two psychologists, one dentist and one clinical research associate. These persons represented 11 of the 34 educational programmes. The results showed that the pharmacist was not considered as a part of the healthcare team. Moreover, the pharmacy profession was not well known by others healthcare professionals, which was why patient education was not known as a pharmaceutical mission. The added-value of the pharmacist was contentious (pharmaceutical expertise was recognized but pharmacists had a lack of knowledge of the real-life experience of the disease according to the interviewed). Respondents also mentioned organisational factors such as lack of time and funds.

Conclusion All these elements of the response could be used in the aim to make it easier for pharmacists’ integration into the educational teams and enhance their multidisciplinary nature. This work allowed reflection with the educational teams, which is essential to the integration. In the team interviewed, there is still no clinical pharmacist and we hope that development of clinical pharmacy could change these representations. Furthermore, it would be interesting to compare our results with the perceptions of European or international health professionals on the role of pharmacists in educational teams.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

Material and methods This was a descriptive study conducted in the form of a survey of pharmacists practising in 153 pharmacies in the economic capital of the country, chosen at random, through an anonymous self-administered questionnaire of 19 questions organised around three items, over a period of 4 months from September to December 2017.

Results One-hundred and thirty pharmacists (85%) responded, of whom 40% had experience of less than 10 years. Regarding their pharmacovigilance knowledge, n=108 (83.1%) confirmed that they were aware of the existence of a national pharmacovigilance organisation in our country. Among pharmacists surveyed, 1.7% could not give a definition of pharmacovigilance, while 67.8% defined it as the activity of identifying, assessing and preventing ADRs resulting from the use of drugs. As for their opinion on the ADRs to be reported, the exceptional or unexpected ADRs were the most chosen by respondents with 25.9%. Sixty-four per cent of pharmacists confirmed that they had already been asked about ADRs in patients. But only 10.7% of these reports were sent to competent authorities. Among the proposed answers concerning the under-reporting, the ignorance of the reporting circuit remains the most chosen cause, with a rate of 44.2%. Finally, a more simplified statement was the way to improve the number of statements most cited, with a rate of 32.7%. The other means proposed, with a rate of 1.2%, were continuing education and awareness-raising through the media.

Conclusion This study showed a moderate level of knowledge and a low perception of pharmacovigilance. There is therefore a real interest in sensitising the teams of pharmacists so that they can play their role in the spontaneous reporting of adverse effects. In this context, a national pharmacovigilance awareness day is planned for March 2019.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Thanks to all the collaborators.
No conflict of interest.
distributed in the middle of the second semester, from 16 to 19 April 2018 at the end of the sessions of interactive work groups concentrating, for the first time, on pharmacovigilance.

Results Of the 122 students in the class, the response rate was 95.90% (n=117). The work group helped to better explain to the students the reporting circuit, however 28 participants reported their inability to report ADR in their future practice (25.92%). Regarding the obligation to report ADRs, 99.4% of students thought that it should be made legally valid for all health professionals. The same number (n=116) found the role of pharmacovigilance to be important.

In addition, almost all of the comments collected after the annual evaluation activity. This result led to the introduction of a system of pharmacovigilance work groups for third- and fourth-year pharmacy students for the 2018–2019 academic year.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Thanks to all participants.

No conflict of interest.

6ER-024

ASPIRIN COMPARED TO ENOXAPARIN OR RIVAROXABAN FOR THE PREVENTION OF VTE FOLLOWING HIP AND KNEE REPLACEMENT – A RETROSPECTIVE COHORT STUDY IN IRELAND

1S Ní Cheallaigh, 1E Kehoe, 1C O’Connell, 1A Fleming, 1Li Sahm. 1Cappagh National Orthopaedic Hospital, Dublin 11, Ireland; 2School of Pharmacy, University College Cork, Cork, Ireland

10.1136/ejhpharm-2019-eahpconf.621

Background The risk of venous VTE following major orthopaedic surgery is among the highest for all surgical specialties, and can result in significant morbidity and mortality. Guidelines for thromboprophylaxis following elective primary total hip or knee replacement (THR or TKR) in the Cappagh National Orthopaedic Hospital (CNOH) are based on American College of Chest Physicians (ACCP) guidance. The most recent change to local guidelines was the introduction of the extended aspirin regimen as standard thromboprophylaxis.

Purpose The aim of this study was to establish the effectiveness of this regimen by comparing VTE rates in patients receiving extended aspirin to those receiving inpatient enoxaparin or modified rivaroxaban regimens.

Methods This was a retrospective cohort study. Data were collected from the CNOH patient record system. All eligible patients who underwent primary TKR or THR between 1 January 2010 and 30 June 2016 were included (n=6,548).

Results The overall VTE rate was 0.99%. The VTE rate in both the inpatient enoxaparin group (n=961) and extended aspirin group (n=3,460) was 1.04%. The VTE rate in the modified rivaroxaban group (n=1,212) was lower at 0.66%, but the difference was not statistically significant (p=0.154). A history of VTE was the only significant demographic risk factor for post-operative VTE (0.87% vs. 3.54%, p=0.0002).

Conclusion These findings confirm the effectiveness of our current standard thromboprophylaxis regimen. The results are generalisable to patients undergoing elective primary THR or TKR nationally and internationally. This study adds to the growing evidence supporting the use of aspirin thromboprophylaxis in the orthopaedic setting.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

6ER-025

IMPACT OF THE NEW EUROPEAN REGULATION ON CLINICAL TRIALS IN THE ACTIVITY AND DYNAMICS OF RESEARCH ETHICS COMMITTEES FROM CATALONIA

1S Redondo*, 2S Quintana, 3S Cassany Pou, 1T Martí Guixà, 1P March López, 1J Nicolás, 1C Fernández Lastra, 1EL Marín Fernández, 1EL Hospital Universitari Mutua Terrassa, Pharmacy, Terrassa, Spain; 2Hospital Universitari Mutua Terrassa, Research Ethics Committee, Terrassa, Spain; 3Department of Salut – Generalitat de Catalunya, Servei de Control Farmacèutic i Productes Sanitaris, Barcelona, Spain; 4Hospital Universitari Mutua Terrassa, Research Ethics Committee- Pharmacy, Terrassa, Spain; 5University of Barcelona, Clinical Pharmacy and Pharmacotherapy Unit, Barcelona, Spain; 6University of Barcelona, Clinical Pharmacy and Pharmacotherapy Unit, Barcelona, Spain

10.1136/ejhpharm-2019-eahpconf.622

Background Clinical research proposals on humans as clinical trials (CT), post-authorisation studies or any project must be submitted to an independent research ethics committee (REC). Different legislation has regulated CT in Spain, the last two European transpositions significantly modified the dynamics of REC, especially the most recent one, currently in force. Spain was the first European country to apply Regulation (EU) No 536/2014 with publication in December 2015 of Royal Decree 1090/2015.

Purpose The objective was to analyse and quantify the impact of Regulation (EU) No 536/2014 on the dynamics and activity of RECs from Catalonia regarding CT evaluation.

Material and methods Through an official request to the Catalan Health Service, annual activity reports that RECs from Catalonia have to present to competent government agency, were analysed.

Two periods were established: period 2007–2015 (under Directive 2001/20/CE) and period 2016 (under Regulation No 536/2014).

RECs were classified into three groups: high (Group 1), medium (Group 2) and low (Group 3), according to their annual evaluation activity.

Meetings number and evaluation activity were recorded. Descriptive statistical analysis was performed using SPSS v.19.

No normal distribution was resulted (Kolmogorov-Smirnov test), so the Mann–Whitney U test was used, statistical significance p<0.05.

Results Three-hundred and seventy-four reports from 47 RECs were reviewed. The median number of meetings per period, analysed by type of REC were:

<table>
<thead>
<tr>
<th>Group</th>
<th>Period 1</th>
<th>Period 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 (IQR=11)</td>
<td>9 (IQR=10)</td>
<td>0.117</td>
</tr>
<tr>
<td>2</td>
<td>10 (IQR=10)</td>
<td>10 (IQR=10)</td>
<td>0.469</td>
</tr>
<tr>
<td>3</td>
<td>10 (IQR=12)</td>
<td>10 (IQR=12)</td>
<td>0.232</td>
</tr>
</tbody>
</table>

p=0.227 (period 1 vs. period 2, globally)