in a test with the National Medicines Verification Organisation to evaluate possible strategies, compatible with legislation, for the implementation of serialisation.

Purpose The aim of the first test is to evaluate the feasibility of decommissioning of each unique identifier at the reception of medicinal products in the pharmacy.

Material and methods During 14 days (summer 2018), the pharmacy technician scanned the data-matrix of each box received with an Optel certa tabletop (possibility of switching between vertical and handheld scanner). Quantitative indicators (number of boxes received, number of serialised drugs in circulation, products with a non-compliant data matrix) were recorded. The scanning time of each carton was measured and the equipment’s ergonomics evaluated.

Results During the study, the pharmacy received an average of 822 boxes/day (min: 273; max: 1737), of which 90% were in the scope of the FMD and the RD. The average scanning time per pack was 5 s, totalling an average of 56 minutes/day to scan all boxes. Only 3/530 medications displayed a serial number, while three of them (nicardipine, pemetrexed, midazolam) had a non-readable data-matrix (colour inversion) on their packaging and thus could not be scanned. The Optel certa tabletop and its software are considered easy to use. But the manoeuverability and malfunctions of the handheld scanner contributed to inflate the scanning time.

Conclusion This first test demonstrated the technical feasibility of decommissioning boxes on their reception in real working conditions. The connection to the National Medicines Verification System was not effective during the test, so the upload conditions. The connection to the National Medicines Verification Organisation of decommissioning boxes on their reception in real working conditions. The average scanning time between vertical and handheld scanner). Quantitative indicators (number of boxes received, number of serialised drugs in circulation, products with a non-compliant data matrix) were recorded. The scanning time of each carton was measured and the equipment’s ergonomics evaluated.

Results During the study, the pharmacy received an average of 822 boxes/day (min: 273; max: 1737), of which 90% were in the scope of the FMD and the RD. The average scanning time per pack was 5 s, totalling an average of 56 minutes/day to scan all boxes. Only 3/530 medications displayed a serial number, while three of them (nicardipine, pemetrexed, midazolam) had a non-readable data-matrix (colour inversion) on their packaging and thus could not be scanned. The Optel certa tabletop and its software are considered easy to use. But the manoeuverability and malfunctions of the handheld scanner contributed to inflate the scanning time.

Conclusion This first test demonstrated the technical feasibility of decommissioning boxes on their reception in real working conditions. The connection to the National Medicines Verification System was not effective during the test, so the upload conditions. The connection to the National Medicines Verification Organisation of decommissioning boxes on their reception in real working conditions. The average scanning time between vertical and handheld scanner). Quantitative indicators (number of boxes received, number of serialised drugs in circulation, products with a non-compliant data matrix) were recorded. The scanning time of each carton was measured and the equipment’s ergonomics evaluated.

References and/or acknowledgements

No conflict of interest.

SPD-023

INTEREST IN CONSIGNMENT INVENTORY MANAGEMENT OF ARTICULAR PROSTHESES AT A UNIVERSITY HOSPITAL

1W Enneffah*, 1MA El Wantiti, 1A Cheikh, 1M Abouastia, 6B El Ouahedi, 1A Bennana, 1S Taoufik, 1Lamsouri. 1Mohammed v Military Teaching Hospital – Faculty of Medicine and Pharmacy of Rabat, Pharmacy, Rabat, Morocco; 2Cheikh Zaid International University Hospital – Abdusseib International University of Health Sciences, Pharmacy, Rabat, Morocco; 3Children’s Hospital of Rabat – Faculty of Medicine and Pharmacy of Rabat, Pharmacy, Rabat, Morocco; 4Mohammed v Military Teaching Hospital, Pharmacy, Rabat, Morocco; 5Cheikh Khalfi Ben Zayed Hospital – Faculty of Medicine and Pharmacy of Rabat, Pharmacy, Casablanca, Morocco; 6Faculty of Medicine and Pharmacy of Rabat, Pharmacy, Rabat, Morocco

10.1136/ejhpharm-2019-eahpconf.63

Background The joint prostheses occupy a very important place in the therapeutic arsenal of our establishment, in the part of the number of prostheses that are implemented per year and secondly, by the colossal budget for their supply. Therefore, their circuit from acquisition to use, must be perfectly mastered by hospital pharmacists.

Purpose To highlight the advantages of the Consignment Inventory Management (CIM) of joint prostheses in hospitals.

Material and methods In order to demonstrate the organisational interest of the understanding of documents as well as the economic interest that present the CIM of joint prostheses, we have analysed the circuit of articular prostheses at our hospital since their acquisition until their implantation in the patient.

Results The choice of prostheses component’s size depends on the anatomical and physiological conditions and also on the age and activity of the future operated patient. As a result, the conventional acquisition of different sizes of each prosthesis component has become obsolete. The CIM, which consists in making available, for a contractually defined period, different sizes of the same prosthesis components (which remain the property of the supplier until their use in the patient) is an excellent alternative. This mode of replenishment at the request of the consumed size allowed a better control of availability, expiry dates and traceability.

At the economic level, it allowed us to save about €1.7 million per year (on an overall joint prostheses annual budget of €9 million) compared to the classic supply.

Conclusion The CIM based on the automatic replenishment of the consumed parts, combined with controlled traceability, helped the optimisation of expenses, avoiding breaks and ensuring the proper monitoring of these implantable medical devices at our hospital.

References and/or acknowledgements

None.

No conflict of interest.

SPD-024

IMPLEMENTED STRATEGIES TO SOLVE MEDICINES SHORTAGES

MD Toscano Guzmán, MDR Mora Santiago, C Estain*, 1J Moya Carmona, E Aguilar del Valle, JM Fernandez Ovies. Hospital Universitario Virgen de la Victoria, Servicio Farmacia, Malaga, Spain

10.1136/ejhpharm-2019-eahpconf.64

Background Medicines shortages (MS) have become a complex global issue, forcing changes in the hospital formulary and increasing the risk of medication errors. Additionally, problems related to these MS create difficulties for healthcare professionals and require urgent pharmacist-led action.

Purpose To analyse the impact of MS in our centre and to describe the different actions performed by the Pharmacy Service (PS) to minimise risks regarding medication errors.

Material and methods Descriptive, observational and retrospective study performed in a third-level hospital regarding MS registered in our centre from January 2017 to September 2018. The following data were retrieved from the MS listed in the Spanish Agency for Medicines and Health Products (AEMPS) online platform and Farmatools management tool: affected medicine (active substances and pharmaceutical forms); inclusion in the hospital formulary; and measures implemented to solve the MS (only when included in the hospital formulary).

Results During the study period, there were 476 medicines affected by shortage problems in our country. Three-hundred and twenty-three (67.8%) active substances were included in our hospital formulary, but only 138 (29.9%) had the same dosage and pharmaceutical form, and consequently, needed to be managed by the pharmacist.