The strategies for the management of MS were:

- Changing the provider or buying a different packaging in 55 cases (39.9%).
- Using a therapeutic alternative in 13 cases (9.4%).
- Medicine imported from other countries through AEMPS authorisation was available in 26 cases (18.9%) but we only used it in 11 cases (8%) because of the need to repack each unit with a translated label and product data sheet before its distribution in the hospital.
- Restricted use of available pharmacy stock in 14 cases (10.1%), according to clinical criteria agreed with medical staff.
- No action was needed in 45 cases (30.6%) due to infrequent use of the medicine affected and/or enough pharmacy stock available until resupply.

Conclusion A large number of medicines were affected by shortages in our centre. These MS have shown an important degree of compromise in patient care and treatment safety. Pharmacists are required to take urgent action to manage problems caused by MS, which implies greater workload due to administrative procedures, determination of therapeutic alternatives and communication with health professionals involved, so as not to compromise the continuity of treatments.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

2SPD-025 OPTIMISING OF PLANNED DRUGS ORDERS AND RECEPTION PLATFORM ACTIVITY

P Ettiene*, M Vasseur, S Deperpé, G Vitale, N Beaurgrand, M Desplechin. Logipharma-CHU Toulouse, Cugnaux, France

Background In the establishment, the most commonly used medications are ordered according to a schedule, which is set up for the year.

Purpose The goal of this study is to quantify drug order amount per timetable in order to better dispatch future orders and, thus, reception activity (RA). This is to avoid drug shortages.

Material and methods The first part analysed retrospectively the RA from January to July 2018. Statistics on numbers of received lines per week were conducted, including only scheduled drugs. Discussions with the reception team were also held to evaluate pallet’s volume of the different suppliers. In the second part, analysis of a future timetable has been made by extracting data from Copilote to process it with Excel. By taking into account the suggestions of the team and heterogeneity of RA, a new timetable with a new scheduling of suppliers was realised so as to have a reproducible activity independent from the day of reception.

Results Of 1873 referenced drugs, 86% have a scheduled ordering. On average, 390 lines of scheduled drugs (LSD) are received per week, with a 95% confidence interval (CI) of 363 to 418: these are important fluctuations.

The field team also identified 17 suppliers as difficult to receive because of their pallet’s size and number of different references per pallet. Taking these constraints into account, we succeeded in spreading them over time to have a reproducible pattern.

The previous timetable had a mean of 260 LSD per calendar (CI: 246 to 275). Once reworked, the mean stayed the same, but the CI was 254 to 264, resulting in a better partition of the different suppliers.

Conclusion Nowadays, drug procurement is becoming challenging because of the number of drug shortages that hospitals have to face. This study reveals the necessity of better scheduling the planned drug orders, to optimise their reception. It is also necessary to re-evaluate these timetables as each drug market changes, in order to not disrupt the reproducible RA implemented here.

REFERENCES AND/OR ACKNOWLEDGEMENTS


No conflict of interest.

2SPD-026 AUTOMATED UNIT DOSE-DISPENSING DEVICE: ASSESSMENT OF THE CONTROL METHOD

P Frémaux*, A Fiedler, J Lelièvre, M Le Bot, V Cogulet. CHU Brest, Pharmacie, Brest, France

Background In January 2018, an automated dispensing device was installed in our hospital (JVM slide type). It is a repackaging system in which oral solid forms are removed from the manufacturer’s original packs and assembled into unit dose sachets. Our quality assurance programme consists in performing automatic inspection for filling completed sachets (JVM Vizen). Then, packages are automatically winded and cut (JVM Wizer). Non-conformities (NC) are classified by the technician into detection errors or real NC that are corrected afterwards. This two-step process is at risk because of human interventions.

Purpose The aim of the study was to assess the performance of the inspection machine, and ensure that the validation of the two-step process is correctly performed.

Material and methods During 12 weeks, all sachets have been analysed a posteriori, thanks to the photographs taken by the inspection machine (Vizen). The NC, as well as the validation errors, have been classified into detection errors (false positives) and real NC (i.e: missing drug, extra drug, foreign element in the sachet, broken drug, wrong medication).

Results 25456 sachets have been produced since the beginning of the study: 8% were declared NC by the inspection machine: 81% of these NC were detection errors. Four drugs were frequently (25% of detection errors) recovered: Seresta 10 mg, 1/2 Alprazolam 0.25 mg, Ramipril 1.25 mg and 1/2 Seresta 50 mg. Eighteen per cent of the NC were real NC.

Only 34 validation errors (i.e: NC correctly detected by the Vizen and wrongly classified as detection error by the technician) were observed.

During the study, 13 NC were not detected by the inspection machine.

Conclusion Despite the automatic control, human intervention is required in this process. The staff will be alerted of those risks in order to raise their awareness and improve the validation step. The detection errors, which are time-consuming, could also be decreased by enhancing the database of the inspection machine. The time saved could be used to focus more on the real NC. For extra and missing drugs, the container location could be modified.