procedural kits, the replenishment of the stock of medical devices (MD) at the storage locations of the surgery block operators, and returns management. By the very advanced radio frequency identification (RFID) technology according to which the products are equipped with a label containing the information of the product, we can trace the MDs from acceptance in the pharmacy to deposit in the RFID basket for surgical intervention and the patient, computerising the management procedures, rationalising the inventory management of the devices, and managing the procurement and purchasing processes with a minimum activity requirement by the operators.

Purpose Improve clinical practice in the healthcare system by RFID technology, which shows efficiency and ability to manage a rational use of human resources and materials.

Material and methods With the aim of providing some indicators that show a summary of information on the success of the activities of all the operators involved, we analysed:

- Allocated index: ratio between specific cost centre (CC) allocations vs. generic CC allocations; and
- Employment index: ratio between the total number of interventions performed and those that resulted without registering basket consumption.

The monitoring of these parameters makes it possible to check the progress of the improvement objectives.

Results The analyses of the cost (by intervention) recorded for the first 9 months of 2017 and 2018 in the same range of surgical specialists, shows an increase from 34% in 2018 of the total report, of which the amount allocated directly to the surgical specialists, shows an increase from 34% in 2018 to 40% in 2018 of the first 9 months of 2017 and 2018 in the same range of surgical specialists.

In addition, in 2018 there was a reduction of 80% consumption recorded in intervention compared to 2017, of which the overall percentage of operations without associated MD dropped from 3.4% (2017) to 0.7% (2018).

Conclusion The analysis and reports, processing through the collaboration between the various professions, has allowed a constant control of consumption and costs for each intervention, per patient and cost centre/operator, ensuring better management of reporting flows at cost.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

OPTIMISING INVENTORY MANAGEMENT IN A HOSPITAL PHARMACY

C. Muziotti*, T. Vanborne, L. Del. Centre Hospitalier D’Hyères, Service Pharmacie, Hyères, France

10.1136/ejhpharm-2019-eahpconf.70

Background In a multidisciplinary hospital, inventory management involves a difficult balance between the risk of running out of stock and the cost of stock. We therefore implemented a new inventory management method in December 2017, taking into account the Pareto law.¹

Purpose The purpose of this economic study was to determine which inventory management model is the most economical.

Material and methods Drug orders previously placed when the safety threshold was reached were grouped by laboratory. A monthly schedule of laboratory orders had been published so that high-cost drugs were processed at the beginning of the month. Quantities ordered made it possible to obtain a stock equivalent to 1 month of consumption. Stock’s value was evaluated with MAGH2 management software retrospectively over the first 5 months of the years 2017 and 2018. During the same period, monthly orders made were evaluated. We performed a statistical test comparing stock value averages before and after management change. We compared the overall cost of placing orders before and after this management change.

Results The average decrease in the stock’s value observed after modification of inventory management mode is 38%. The difference between the averages observed before and after this change is significant at alpha risk=5% and the assumption that the value of the stock is significantly lower when the Pareto law is taken into account is verified. Order’s cost was evaluated at €60 per order. Before implementation of the monthly calendar, grouping specialties of the same laboratory in a single day, the average number of monthly orders was 258. Then the average number of monthly orders decreased to 202. The average monthly cost of placing an order has been reduced by €3360 thanks to the monthly order calendar.

Conclusion This inventory management method has enabled our domestic pharmacy to reduce the cost of holding stock, limit the number of stockouts at the pharmacy and reduce the overall cost of placing orders. It would be interesting to complete this study by accounting for the reduction in billing time resulting from the reduction in the number of invoices.

REFERENCE AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

MANAGEMENT OF DRUG SHORTAGES IN A TERTIARY HOSPITAL

G Miralles Andreu, M Pomares Bernabeu, S Martínez Pérez, C Matoses Chirivella, L Peral Ballester, A Navarro Ruiz*. Hospital General Universitario de Elche, Hospital Pharmacist, Elche, Spain

10.1136/ejhpharm-2019-eahpconf.71

Background Drug shortages can occur for many reasons including manufacturing, quality problems, delays and discontinuations. Nowadays, the number of drug shortages is increasing and finding solutions for them is fundamental.

Purpose To analyse drug shortages that have affected the hospital in the 3 months from June to August, and the pharmaceutical actions carried out to solve them.

Material and methods Retrospective observational study in which drug shortages reported between June and August 2018, were analysed. A list of all the specialties with shortage problems in these 3 months was obtained from the Agencia Española del Medicamento y Productos Sanitarios. Those which affected directly or indirectly our tertiary hospital were chosen. The following variables were collected: drug involved, therapeutic group, if the drug shortage was active or solved, time in resolution and pharmaceutical actions implemented to solve them.

Results From 504 drug shortages reported in our country from June to August, 264 affected directly or indirectly our hospital: 136 active ingredients were involved in this list. The therapeutic group most affected was antibiotics, reaching 20% of the total number of drug shortages reported in the hospital, followed by antineoplastics with 13%.