3.8 min and the spectrum was identical. This additional peak was identified as 5-HMF.

Conclusion Norepinephrine diluted in G5% at 0.50 mg/mL and 1.16 mg/mL were physically and chemically stable over a period of 48 hours at room temperature. These stability data of highly concentrated solutions provide additional knowledge to assist ICUs in daily practice.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

SUCCESSFUL TREATMENT OF HAMARTOMA IN CHILD SYNDROME AFTER 30 MONTHS WITH TOPICAL ADMINISTRATION OF SIMVASTATIN/CHOLESTEROL CREAM: A CASE REPORT

H. Crametz, D. Lannoy*, B. Catteau, V. Foulon, C. Naasir, M. Roche, P. Oudou. CHRULille, Pharmacie, Lille Cedex, France; CHRULille, Dermatologie, Lille Cedex, France

Background Congenital hemidysplasia with ichthyosiform erythroderma and limb defects syndrome (CHILD) syndrome is a rare X-linked dominant disorder of cholesterol metabolism that clinically expresses as an epidermal hamartoma. Using co-application of topical formulation of simvastatin and cholesterol (TFSC) on skin lesions after previous failures has recently been reported.

Purpose To describe protocol of use, efficacy and safety of TFSC.

Material and methods A woman, born in 1988, presented at birth with an extensive epidermal hamartoma due to CHILD syndrome. The cutaneous presentation was ichthyosiform erythroderma with sharp midline demarcation involving the right side of the body and a homolateral lower limb. She had skeletal malformations of her upper and lower limbs. Partial lower limb amputation was necessary when she was 2 years old. In February 2016, since skin lesions did not improve with acitretin, topical corticoid and various types of dressings, TFSC was begun after obtaining informed consent.

We developed an original ethanol-free formulation with simvastatin, cholesterol in Excipial Lipocreme (Galderma). The preparation consists of incorporating simvastatin in powder and triturated ground powder of cholesterol with Excipial: physical stability was satisfactory for at least 30 days. We used the following protocol: in the first month, 0.5% simvastatin and cholesterol in Excipial Lipocreme, twice per day on a limited area to test tolerance; then afterwards at 2%, twice per day on a wider area. Efficacy was clinically assessed (aspect and extension of the skin lesion) and tolerance was clinically and biologically assessed.

Results TFSC was started in February 2016. Erythema whitened after 10 months and totally disappeared after 18 months. After 24 months, improvement began on the papillomatous aspect of the stump. After 30 months, whitening areas were stable, with persisting papillomatosis in the stump and flexion areas.

A 2 month supply disruption of simvastatin powder during the first year led to the reappearance of erythema. When TFSC resumed, the lesions improved again.

The main reported side effect was the skin’s dryness on application, leading to emollient use. Complete blood counts, electrolytes, urea, triglycerides, cholesterol, CPK and liver function remained normal.

Conclusion This case shows the interest and safety of TFSC in hamartoma lesions, indicating a potential interest in other types of hamartoma.

REFERENCE AND/OR ACKNOWLEDGEMENTS


No conflict of interest.

STABILITY OF CHLORHEXIDINE 0.05% EYE DROPS COMPOUNDING DRUG

S. Berisa*, L. Macia, A. Fernández, E. Otero, X. García. Instituto Oftalmológico Fernández Vega, Pharmacy, Oviedo, Spain; Santiago de Compostela University, Pharmacy, Santiago de Compostela, Spain

Background Chlorhexidine has been used as a surgical prophylaxis in patients allergic to povidone in order to reduce postsurgery infections.

Purpose To develop a 0.05% chlorhexidine ophthalmic formulation and study its stability in different storage conditions: in fridge (5°C), at room temperature (20°C) and accelerated (40°C).

Material and methods Chlorhexidine 0.05% ophthalmic formulation was compounded in the pharmacy service by an aseptic technique, as starting products, chlorhexidine digluconate 20% (Acofarma), glacial acetic acid (Fagron), anhydride sodium acetate (Fagron) and water for injection (Braun) were used. The compounded drug was packed into a high-density polyethylene eye dropper.

The pH and osmolarity of the samples were subsequently checked. The determination of pH was made with pHmeter Hanna HI5221 and the osmolarity was made with Fiske Model 210. Stability was determined by HPLC, Agilent 1260series HPLC System with a PAD detector. Each sample was taken twice for each condition.

Results The organoleptic properties of the three formulas were acceptable. The pH and osmolarity results differed minimally between 0 and 6 months, less than a 5% difference in pH and less than a 10% difference in osmolarity. The values were:

<table>
<thead>
<tr>
<th>Abstract 3PC-010 Table 1</th>
<th>Fridge (5°C)</th>
<th>Room temperature (20°C)</th>
<th>Accelerated (40°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.66</td>
<td>5.67</td>
<td>5.66</td>
</tr>
<tr>
<td>Osmolarity (mOsm/Kg)</td>
<td>198.35</td>
<td>198.54</td>
<td>200.45</td>
</tr>
</tbody>
</table>

The concentration fell below 10% at month 6.

Conclusion Chlorhexidine 0.05% eye drops can be compounded in the pharmacy service for allergic surgical patients. The drug meets the galenic requirements for ophthalmic preparations and can be stored at room temperature as well as in the fridge for a period of 3 months unopened.

REFERENCE AND/OR ACKNOWLEDGEMENTS


No conflict of interest.