dermatology, paediatrics and pneumology departments according to heterogeneous protocols. For the diagnosis of non-mar-kezed allergens, only OPTs preparations are made in our hospital pharmacy. SKs are manufactured extemporaneously by nurses before administration.

Purpose Following a dermatologist’s request that ATs be performed in day hospital, we decided that drugs will be manufactured by the pharmacy and that it was necessary to harmonise protocols of different services. But how should it be put in place?

Material and methods Establishment of a working group comprising pharmacists, pulmonologists, dermatologists, paediatricians, doctor of medical information and the financial affairs department to: determine allergens to be tested; work on a homogenisation of protocols; determine the correct codification of acts for the costing of the care; determine an organisation between the prescribers’ requests; and a preparation of ATs by the pharmacy, according to processes similar to other institutions.

Results Five drug classes have been identified as priorities for development: antibiotics, analgesics, local anaesthetic drugs, iodinated contrast products and nonsteroidal anti-inflammatory drugs. ATs will be made in day hospital one day per week for all medical specialties, and their manufacture will be carried out the day before by the pharmacy. During the implementation of these ATs, we encountered difficulties in standardising protocols. Indeed in paediatrics, the target dose of these tests varies according to the weight of the child. In addition to this, it is necessary to produce duplicate SKs to prevent the failure of administration due to children’s movements. We therefore decided to standardise adult protocols separately from paediatrics.

Conclusion This work required close collaboration between prescribers and pharmacists. It will allow for better patient management, ATs manufacturing according to good preparation practices guidelines, but also significant financial value through day hospital costing. A study of the stability of dilutions of molecules tested will subsequently be necessary.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

3PC-014 STABILITY OF 1 MG/ML AND 4 MG/ML HYDROCORTISONE SODIUM SUCCINATE SOLUTIONS IN 0.9% SODIUM CHLORIDE AND 5% GLUCOSE

1K Milovec*, 2R Roskar, 2Ž Temova-Rakusa, 2EE Gaal. 1UKC Ljubljana, Pharmacy, Ljubljana, Slovenia; 2University of Ljubljana- Faculty of Pharmacy, Biopharmaceutics and Pharmacokinetics, Ljubljana, Slovenia

10.1136/ejhpharm-2019-eahpconf.95

Background Hydrocortisone in high doses is given to haemodynamic unstable patients as a vasopressor. Frequently the same patients have volume restriction, and high concentrations of hydrocortisone are necessary. Although there is no certain evidence of the benefits of continuous infusion over bolus injection, continuous infusion is a well-established practice in our hospital. Manufacturers state that the solution after reconstitution and dilution should be used immediately, however it is not defined how long this infusion can be used after application. There are limited data on the stability of hydrocorti-sone in concentrations greater than 1 mg/ml.

Purpose The aim of our study was to determine the physical and chemical stability of hydrocortisone sodium succinate in two concentrations (1 mg/ml and 4 mg/ml) at room temperature up to 24 hours after reconstitution and dilution. These are the most frequent circumstances in the wards in our hospital.

Material and methods We used duplicate samples of hydrocortisone sodium succinate diluted in 0.9% sodium chloride and 5% glucose to concentrations 1 mg/ml and 4 mg/ml. Samples were stored at room temperature (25°C) and at elevated temperature (30°C). Another set of reconstituted and diluted solutions stored at room temperature was protected from light. Concentrations were measured by a validated high-performance liquid chromatography (HPLC) method to determine the percentage of degradation after 3, 5, 7, 9, 12, 24 and 48 hours.

Results Our study demonstrates that hydrocortisone is equally stable at concentrations 1 mg/ml and 4 mg/ml, in both 0.9% sodium chloride and 5% glucose, regardless whether it is protected from light or not. At room temperature, degradation of hydrocortisone after 12, 24 and 48 hours was 3%, 5% and 10%, respectively. Declines from the initial hydrocortisone concentration in samples stored at 30°C after 3, 5, 12 and 24 hours were 3%, 5%, 9% and 14% respectively.

Conclusion Hydrocortisone sodium succinate is physically and chemically stable for 12 hours at 25°C.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Sincere thanks to pharmacists in the chair of biopharmaceutics and pharmacokinetics in supporting my idea and completing the survey.

No conflict of interest.

3PC-015 PHYSICOCHEMICAL STABILITY OF CEFOTAXIME IN POLYPROPYLENE SYRINGES AT HIGH CONCENTRATIONS FOR INTENSIVE CARE UNITS

1E D’Huart*, 1J Vigeron, 1F Blaise, 1A Charmillon, 1B Demoré. 1University Hospital of Nancy, Pharmacy, Vandoeuvre Lès Nancy, France; 2University Hospital of Nancy, Infectious and Tropical Diseases Service, Vandoeuvre Lès Nancy, France

10.1136/ejhpharm-2019-eahpconf.96

Background Cefotaxime is an antibiotic used to treat severe infections such as in intensive care units (ICUs). The dose of cefotaxime can vary from 3 g to 24 g per day and the literature has demonstrated that continuous administration is the preferred mode of administration. In ICUs, a minimum volume is used for patients requiring fluid restriction, leading to high concentrations of cefotaxime.

Purpose The objective was to study the stability of cefotaxime solutions at 83.3 mg/mL and 125 mg/mL, diluted in 0.9% sodium chloride (0.9% NaCl) or 5% glucose (5%), in polypropylene syringes after preparation and after a 6 hour and 12 hour storage at 20°C–25°C.

Material and methods Three syringes for each condition were prepared. At each time of analysis, three samples for each syringe were prepared and analysis by high-performance liquid chromatography (HPLC) coupled to a photodiode array detector. The method was validated according to the International Conference on Harmonisation Q2 (R1). Physical stability was evaluated by visual and subvisual inspection (turbidity by UV spectrophotometry at 350, 410 and 550 nm as recommended by the European Consensus Conference). pH and osmolality values were measured.