Results For each solvent, cefotaxime solutions at 83.3 mg/mL and 125 mg/mL retained more than 90% of the initial concentration after 12 hours. During the study, pH values decreased slightly, the intensity of the yellow colour increased and absorbance values increased progressively for each wavelength and each condition. An additional peak with a relative retention at 3.01 was also observed after the forced degradation gradually increased up to 4.01% in 0.9% NaCl and 3.17% in G5% of the total surface area of the peaks present on the chromatogram after 12 hours.

Conclusion In view of the results and despite the fact that the solutions retained more than 90% of the initial concentration after HPLC analysis, we propose to limit the stability of cefotaxime in 0.9% NaCl and G5% at 83.3 and 125 mg/mL at 6 hours. These stability data of highly concentrated solutions provide additional knowledge to assist ICUs in daily practice. Highly concentrated cefotaxime solutions are unstable after a 6 hour storage and cannot be administered as a daily infusion.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

3PC-016 PHYSICOCHEMICAL STABILITY OF VANCOMYCIN HYDROCHLORIDE IN POLYPROPYLENE SYRINGES AT HIGH CONCENTRATIONS FOR INTENSIVE CARE UNITS

E D’Huart*, 1J Vigneron, 2A Charmillon, 2B Demoré. 1University Hospital of Nancy, Pharmacy, Vandoeuvre Lès Nancy, France; 2University Hospital of Nancy, Infectious and Tropical Diseases Service, Vandoeuvre Lès Nancy, France

Background In severe infections such as in intensive care units (ICUs), the recommended dose of vancomycin may be 60 mg/kg/day. Studies demonstrated that continuous infusion of vancomycin allowed rapid target concentration. In ICUs, a minimum volume is used to avoid fluid overload for patients requiring fluid restriction, leading to high concentrations of vancomycin.

Purpose The first objective of this work was to study the impact of an electric syringe pump on physical stability. The second objective was to study the stability of vancomycin solutions at 62.5 mg/mL and 83.3 mg/mL, diluted in two solvents: 0.9% sodium chloride or 5% glucose, in polypropylene syringes after the preparation and after a 6 hour, 24 hour and 48 hour storage at room temperature.

Material and methods Chemical stability was analysed by high-performance liquid chromatography coupled to a photodiode array detector at each time of analysis. The method was validated according to the International Conference on Harmonisation Q2 (R1). Physical stability was evaluated by visual and subvisual inspection (turbidity by UV spectrophotometry at 350, 410 and 550 nm as recommended by the European Consensus Conference). Three syringes for each condition were prepared. At each time of analysis, three samples were analysed for each syringe. pH and osmolality values were evaluated at each moment of the analysis. Chemical stability was defined as not less than 90% of the initial concentration.

Results The action of an electric syringe pump did not cause visual modification. Vancomycin diluted in 0.9% sodium chloride at 62.5 mg/mL and at 83.3 mg/mL retained more than 90% of the initial concentration after 48 hours and 24 hours respectively. Diluted in 5% glucose and stored at 20°C–25°C, vancomycin solutions at 62.5 mg/mL and 83.3 mg/mL retained more than 90% of the initial concentration after 48 hours. Some precipitates were visible after 48 hour storage for the vancomycin syringe at 83.3 mg/mL in 0.9% sodium chloride. In other conditions, no visual modification was observed.

Conclusion Vancomycin hydrochloride diluted in 5% glucose at 62.5 mg/mL and 83.3 mg/mL were physically and chemically stable over a period of 48 hours at room temperature. For high concentrations of vancomycin, 5% glucose as solvent is recommended.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

3PC-017 PHYSICAL COMPATIBILITY OF INTRAVENOUS ANTI-INFECTIVE DRUGS WITH MEDICATIONS COMMONLY USED IN INTENSIVE CARE UNITS

E D’Huart*, J Vigneron, B Demoré. University Hospital of Nancy, Pharmacy, Vandoeuvre Lès Nancy, France

Background In intensive care units (ICUs), intravenous (I.V) accesses are usually limited, leading to concomitant administration of different drugs in the same infusion line.

Purpose The objectives were: to perform an observation of the administration of anti-infective drugs (antibiotics, antiviral and antifungal drugs) in the ICUs; to compare with compatibility data available in the literature; and in the absence of compatibility data, to test the physical compatibility in our laboratory.

Material and methods Between April and June 2018, an observational prospective study was realised over 2 weeks in each of the three ICUs selected. Patients receiving more than one I.V drug including an anti-infective drug in the same line simultaneously (Y-site injection or mixed in the same container) were included. All I.V. drugs were recorded as concentration, solvent, type of container and flow rate. Compatibility were assessed pairwise by using three databases: The Handbook on Injectable Drugs 19th edition, King Guide to Parenteral Admixtures and Stabilis.

For missing data, three tests were realised for some pairwise: (drug A/drug B): 1 mL/9 mL; 9 mL/1 mL; and 5 mL/5 mL. Drugs were considered compatible if no precipitate, colour change or gas formation were observed after preparation and after 1 a hour and 4 hour storage at room temperature. For subvisual evaluation, turbidimetry by UV spectrophotometry was performed at 350, 410 and 550 nm as recommended by the European Consensus Conference.

Results A total of 123 associations between an anti-infective drug and another medication were observed. According to the literature, 33.3% (n=41/123) associations were compatible, 9.8% (n=12/123) were incompatible, 6.5% (n=8/123) had divergent data according to the databases and 50.4% (n=62/123) had no data available. Thirty-eight pairwise mixtures were studied. After laboratory tests, 71.0% (n=27/38) were evaluated as physically compatible, 7.9% (n=3/38) were found to be incompatible after visual evaluation and 21.1% (n=8/38) after only subvisual evaluation.

Conclusion This study demonstrated that some incompatible drugs were mixed before administration to the patient. After laboratory tests, new incompatibilities were found which gives additional information to the literature. However, many other mixtures should be still studied due to missing data.