The ophthalmologists order the drug/s through the online list, then the pharmacist prepares it/them. When the patient leaves the hospital, the pharmacist gives the drug to the patient, along with a leaflet with details about product storage and possible side effects.

Results In the study period, 68 patients received prescriptions for five categories of ocular formulations: antibiotics, antymycotics, immune-suppressors, immune-modulators and oncologic drugs. The hospital pharmacists recorded patient responses to these formulations. Of the 12 patients who received antibiotics, 11 responded positively while one did not provide a response. Antimycotics were prescribed to 25 patients: 20 responded favourably, four unfavourably and one did not provide feedback. Of the 25 patients prescribed immune-suppressors, 10 responded positively, two negatively, two did not respond and 11 are still in treatment. Three patients received immune-modulators, with two responding favourably and one still in treatment. Anticancer formulations were provided to three patients, all of whom responded positively.

This system facilitated analysis of the outcomes of the various treatments.

Conclusion Most of the patients responded to the drug treatment positively and all gave positive feedback about the leaflet. The online prescription system streamlines the work of the pharmacist and the ophthalmologist.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

COMPARISON OF METABOLITE LEVELS IN SERUM AND TEARS: IMPLICATIONS FOR THE DILUTION OF AUTOLOGOUS-SERUM-EYE-DROPS

1D Wandel*, 1C Steuer, 1JP Sigle, 2L Bernasconi, 1R Egger. 2Kantonsspital Aarau, Pharmacy, Aarau, Switzerland; 2Kantonsspital Aarau, Clinical Chemistry and Clinical Immunology, Aarau, Switzerland; 3Stiftung Blutspende, SRK Aargau-Solothurn, Aarau, Switzerland

1D Wandel*, 1C Steuer, 1JP Sigle, 2L Bernasconi, 1R Egger. 2Kantonsspital Aarau, Pharmacy, Aarau, Switzerland; 2Kantonsspital Aarau, Clinical Chemistry and Clinical Immunology, Aarau, Switzerland; 3Stiftung Blutspende, SRK Aargau-Solothurn, Aarau, Switzerland

*Email: dwandel@ksw.aa.ch

Purpose The ratio of serum to tear concentration for a range of metabolites in ASED after prolonged storage time was determined to define dilution that maintains metabolite concentrations equal or above those in tears.

Material and methods After autologous whole blood donation, unit dose ASED were prepared and stored at –20°C for 9 months. Concentration changes of 14 sphingolipids (SLs), 14 lysophosphatidylcholines (LPCs) and 76 phosphatidylcholines (PCs) were determined in ASED on day 0 and day 273 by LC-MS/MS using the Absolute/DQ-p180-Kit (Biocrates Life Sciences) and compared to those in tears of the same person.

Results The concentrations of all SLs in ASED increased by 30%–80% within 9 months. Compared to tears, the concentrations were 10-fold (day 0) to 14-fold (day 273) higher.

The concentrations of all LPCs decreased by 50%–75%, with 20 and five times higher levels on day 0 and day 273 in ASED compared to tears. Most PCs showed a less than twofold increase, while PC ac C30:1/C38:1/C38:2 increased by five–six-fold. In sum, all PC-concentrations were about 16–19-fold higher in ASED (day 0–day 273) than in tears.

Conclusion We observed an increase in SLs probably through the release of sphingosine-1-phosphate from platelets during blood clotting. The decrease in LPCs may be linked to a shift from LPCs to PCs through the presence of LPC-acyltransferases. After 9 months at ~20°C, the LPC levels still exceeded those in tears by five-fold. These data support a dilution up to five-fold as suggested by others (reviewed in 1). Because certain patient populations may benefit from less diluted ASED, an individual approach seems indicated until more clinical information stratified by cause and severity of DES is available.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

DEVELOPMENT OF VIRTUAL DRUG INFORMATION CENTRE FOR PHARMACY COMPOUNDING AREA

1JA Montero Delgado*, 1A Ferrer Machín, 1M Vera Cabrera, 2MC Jordán de Luna, 1D Díaz Díaz, 1González García, 1MA Navarro Dávila, 1R Mesa Exposito, 1E Tever Alfonso, 1MA Ocaña Gomez, 1FJ Meiro Alonso. 2Hospital Universitario Nuestra Señora de Candelaria, Hospital Pharmacy Department, Santa Cruz de Tenerife, Spain; 3Instituto Catalán de Oncología, Pharmacy Department, Barcelona, Spain

1D Wandel*, 1C Steuer, 1JP Sigle, 2L Bernasconi, 1R Egger. 2Kantonsspital Aarau, Pharmacy, Aarau, Switzerland; 2Kantonsspital Aarau, Clinical Chemistry and Clinical Immunology, Aarau, Switzerland; 3Stiftung Blutspende, SRK Aargau-Solothurn, Aarau, Switzerland

Background Professional use of web 2.0 digital tools is increasing recently in the hospital pharmacy field.

Symbaloo (www.symbaloo.com) is a free web-based tool that allows users to create a virtual desk to organise key information sources (links or documents) in a user-friendly and personalised page for free.

Purpose The main objective of the study was to develop a Symbaloo digital desk for the pharmacy compounding area of a tertiary-level hospital.

Material and methods A descriptive study was carried out in May 2018.

A Symbaloo ‘webmix’ called ‘Farmacotecnia’ was created with a pharmacy department profile. The next step was to add links to the web, following the criteria shown below:

- Virtual documents, links and other web resources recommended by healthcare organisations, scientific associations or hospital pharmacy departments.
- Websites that comply with the basic recommendations of reliable health websites of the Health Quality Agency of Andalucía or have any web–quality seal such as ‘Health on the Net Code’ seal.
- Only Spanish– or English–speaking websites.

Update up to 24 months before its inclusion on the webmix. Links of own documents were obtained to share from Google Drive web service.

The webmix was published open access, after the pharmacy department checked the links and information.
Results The Webmix ‘Farmacotecnia’ is available at https://www.symbaloo.com/mix/farmacotecnia. At 10 October 2018, the number of added links was 69, distributed in different categories:

- Official websites of scientific institutions related to compounding pharmacy (eight).
- Databases of compounding formulas and drugs (eight).
- Books, journals and other documents (18).
- Catalogues of paediatric formulae and other paediatric resources (10).
- News, bulletins, blogs, Twitter list and forum related to pharmacy compounding (four).
- Providers’ websites (seven).
- Consultation documents, medical calculators and other web resources (14).

The webmix is currently used by 95 Symbaloo users.

Conclusion Symbaloo is a dynamic tool that supplies access and organisation of the most useful web resources for the pharmacy-compounding area team, and can also act as a ‘filter’ for the excessive health information available on the Internet.

By this method, the search and information query becomes more simple, reliable and potentially efficient in terms of time and clicks saving.

REFERENCE AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

3PC-038 ABSTRACT WITHDRAWN

3PC-039 STABILITY STUDY OF (99mTc)DOTATOC AND (68Ga)DOTATOC IN SYRINGES

1’S Chaib*, 1F Hallouard, 1C Daiousac, 2P Chennell, 2V Sautou, 1M Fraysse. 1 Groupe Hospitalier Sud-Hôpitaux Civils de Lyon, Unité de Radiopharmacie- Service de Pharmacie, Pierre-Bénite, France; 2 Université de Clermont Auvergne – CHU Clermont-Ferrand, CNRS-Sigma Clermont- ICCF, Clermont-Ferrand, France

10.1136/ejhpharm-2019-eahpconf.120

Background Radiopharmaceuticals obtained from radiopharmaceuticals kits occur in multi-dose flasks. The packaging of syringes for the preparation of patient unit doses is the responsibility of radiopharmacists, because it is not evaluated during the marketing authorisation. In addition, if there are difficulties in patient care (placement of the catheter, lack of personnel, and so on) or equipment problems, the contact time of radiopharmaceuticals with the syringe increases.

Purpose Determine the impact of prolonged storage of syringes on the quality of DOTATOC radiolabelled with (99mTc) or (68Ga).

Material and methods (99mTc)DOTATOC and (68Ga)DOTATOC were obtained by preparation of Tektrotyd and Somakit-TOC respectively, according the recommendations of the Summaries of Product Characteristics. Appearance, pH, radiochemical purity, particulate contamination, sterility and endotoxin tests were made according the current European Pharmacopoeia. Adsorption tests of radiopharmaceuticals consist of determining the residual activity in syringes in polypropylene after storage during 2 hour and 3 hour washing with 8 mL of saline.

Results No drug radiolysis was observed of the radiopharmaceuticals (appearance, pH and radiochemical purity were unchanged). No impurity was observed after repackaging, and particular contamination and microbiological aspects remained in specification of the current European Pharmacopoeia. Concerning drug adsorption, the storage induces a slight increase in drug adsorption from 1.6% (SD 0.16; n=4) to 2.3% (SD 0.29; n=4) for Tektrotyd and 1.65% (SD 0.31; n=4) to 1.65% (SD 0.57; n=4) for Somakit-TOC. These good results may be related to their hydrophilic nature.

The packaging and storage of radiopharmaceuticals could lead to drug alteration through microbiological contamination, drug interaction or adsorption with the packaging and radiolysis. For Somakit-TOC, after this period of time there was 29.3% of the initial activity which could not be compensated.