The primary endpoint was changes in glycated haemoglobin (HbA1C) and secondary endpoints included changes in body mass index (BMI), blood pressure (BP), biochemical parameters and percentage of patients reporting adverse effects of therapy.

Data were analysed using SPSS version 20.0 and comparisons of continuous variables were performed using Student’s t test.

Results Eighty-three patients were included (54.2% male). Mean age 56.76±9.87 years, mean duration of T2DM 9.46±5.46 years. Prior to treatment, patients had BMI 37.68±6.82 Kg/m², systolic BP (SBP) 138.80±15.46 mmHg, diastolic BP (DBP) 82.87±10.16 mmHg, fasting glucose 187.33±55.11 mg/dL, HbA1C 8.62±1.34%, total cholesterol 178.1±35.74 mg/dL, LDL cholesterol (c-LDL) 97.66±32.16 mg/dL, HDL cholesterol (c-HDL) 44.54±13.78 mg/dL, triglycerides 197.64±24.19 mg/dL, GOT 29±20.311 U/L and GPT 39.88±31.69 U/L.

Clinical and biochemical values at 6 months were: BMI 36.08±6.32 Kg/m² (p<0.001), SBP 132.76±12.11 mmHg (p<0.001), DBP 77.41±5.62 mmHg (p<0.000), fasting glucose 165.16±56 mg/dL (p=0.003), HbA1C 7.73±1.34% (p<0.001), total cholesterol 170.6±39.19 mg/dL (p=0.230), c-HDL 46.25±15.03 mg/dL (p=0.151), c-LDL 87.74±30.5 mg/dL (p=0.007), triglycerides 198.29±22.29 mg/dL (p=0.957), GOT 24.97±12.49 U/L (p=0.051) and GPT 32.76±18.24 U/L (p=0.026). Any adverse effect was reported.

Statistically significant differences were found regarding several variables, such as BMI, HbA1C, fasting glucose, blood pressure, c-LDL and GPT. No differences were found in total cholesterol, c-HDL, triglycerides and GOT.

Conclusion Six-month therapy with Liraglutide improves not only glycemic control (HbA1C, fasting glucose) but also cardiovascular risk factors (BMI, BP, c-LDL), reducing SBP and DBP by 1 to 5 mmHg. Therefore, Liraglutide may offer an alternative therapy for these patients and will help provide extra cardiovascular benefits.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

4CPS-007 COST MINIMISATION STUDY: SWITCH VIAL TO PEN IN GERIATRICS

I Castanié*, C Vert, P Puyo, AS Mange, A Pages, C Mccambridge, P Cestac. CHU Toulouse, Pharmacy Department, Toulouse, France

Background Insulin glargine (IG; original drug and biosimilar) is on the market in vial or pen presentations with different costs. The biosimilar drug is less expensive than the original drug.

Purpose The main objective was to evaluate the incremental cost of changing IG vial by (original and biosimilar IG) pen over a 1 year period and the nurses’ implementation and acceptability in geriatric wards.

Material and methods IG prescription (number of UI per patient and IG vial consumption) and costs were retrospectively collected over a 1 year period (August 2017 to August 2018). Nurses answered a survey in each geriatric ward to make an inventory of practices and to assess the acceptability of replacing vials with pens. The comparison of security and ease of use of vial and pen (0 to 10 score, 0 bad possibility and 10 best possibility) were performed using the Wilcoxon signed-rank test.

Results Three-hundred and fifty-three patients were included, and the total cost for 108 vials of IG vials was €7200, equivalent to 408 pens of IG for €775.2. The use of vials represents a cost of €7.65 per patient, whereas the use of pens represents a cost of €2.19 per patient. Prescribing biosimilars could be a strategic approach to minimise pharmaceutical costs: in our study the use of 408 IG biosimilar pens would represents a cost per patient of €0.17. In 18 responses to the survey, six nurses did not want to use the pens for various reasons: ‘too many pens in the ward’, ‘waste’, ‘no