hypercalcaemia events (p=0.047). Only weight was associated with hypophosphataemia events (p=0.019).

Conclusion and relevance We found that the IUGR group presented more hypercalcaemia events compared with the non-IUGR group. These results suggest that modification of electrolyte content of the PN in the IUGR group may be a strategy to avoid calcium disturbances.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

4CPS-177 COMPARATIVE STUDY OF PATIENT PROFILES AND INITIAL ANTIRETROVIRAL TREATMENT IN 2014 VERSUS 2018

T Gonzalez Furelos*, A Casas Martinez, I Rodriguez Perin. Xerencia Xestión Integrada Ferrol, Pharmacy Service, Ferrol, Spain

Background and importance Antiretroviral therapy (ART) has evolved over the years, leading to a change in initial therapy strategies.

Aim and objectives To describe and compare the profile of patients who started ART in 2014 and 2018. To assess chosen treatment schemes and cost per patient.

Material and methods A retrospective, observational, descriptive study was conducted in HIV patients who started ART in 2014 and 2018 in a second level hospital. Data collected from the electronic medical history and prescription programme were demographic data, transmission route, viral load (VL) and CD4 lymphocytes at the beginning and after 4 weeks of treatment, chosen ART and treatment cost per patient.

Results Combination ART therapy chosen in 2014: two nucleoside reverse transcriptase inhibitors (NRTIs) (87% tenofovir–disoproxil/emtricitabine (TDF/FTC) and 13% abacavir/lamivudine (ABC/3TC)), a non-nucleoside reverse transcriptase inhibitor (NNRTI) (13.3% efavirenz and 20% rilpivirine) or a protease inhibitor (PI) (46.7% darunavir–cobicistat (DRV/c)) or an integrase inhibitor (INSTI) (20% raltegravir).

Combination ART therapy chosen in 2018: two NRTIs (26.7% TDF/FTC and 53.3% ABC/3TC, 20% tenofovir–alafenamide (TAF/FTC)) and a PI (20% DRV–cobicistat) or an INSTI (60% dolutegravir, 20% elvitegravir–cobicistat (ELV/c)). One patient initiated TAF/FTC+DRV+ELV/c due to a restrictive resistance profile. The cost of ART per patient/year was 8632 € in 2014 and 7405 € in 2018.

Conclusion and relevance The demographic profile of patients changed little over the study period. Sexual transmission continued to be the main route of infection despite official prevention strategies. The new recommendations for early initiation of ART in all HIV patients leads to better results than deferred treatment (higher values of CD4 at baseline and at 4 weeks, and more patients with indetectable VL). Our study reflected a decrease in the use of TDF/FTC as starting ART and TAF/FTC was introduced, a fact attributable to its better bone and renal safety profile. In turn, the use of INSTI associated with initial ART has increased due to its power and good tolerance. The cost/patient decreased slightly despite commercialisation of generics due to the appearance of INSTI and TAF.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

4CPS-178 TRANSCRIPTION OF SUPPORTIVE MEDICATION FOR INPATIENT CHEMOTHERAPY BY DESIGNATED ONCOLOGY WARD PHARMACISTS

1C Imaz*, 2E Smith, 1A Fox, 1D Wright, 4C Carson. 1University Hospital Southampton NHS Foundation, Pharmacy, Southampton, UK; 2University Hospital Southampton NHS Foundation, Southampton Pharmacy Research Centre, Southampton, UK; 3Queen’s University Belfast, School of Pharmacy, Belfast, UK

Background and importance Following several incidents where patients’ supportive treatments were omitted, a safety measure in the verification process for inpatient chemotherapy (IPChx) treatment was implemented. Oncology ward pharmacists (OWPs) must ensure supportive medications are transcribed from ARIA (chemotherapy prescribing software) to JAC (inpatient prescribing software) before chemotherapy is released to the ward. Current practice is for clinicians to complete the transcribing, and delays in prescribing these may delay chemotherapy administration. This can impact on the pharmacy service, hospital workflow, and patient care and satisfaction.

Aim and objectives To evaluate whether the transcribing pharmacist role reduces IPChx delivery time and occurrence of transcribing errors.

Material and methods Stage 1 (control): the clinician led process of transcribing was mapped and the time taken for each stage recorded by OWPs for 4 weeks (February–March 2019) using a piloted data collection form. Stage 2 (active period): OWPs carried out the transcription. Transcription and delivery to patient times were again recorded using the same data collection form (June–July 2019). Stages 1 and 2 mean delivery to patient and transcribing process times were compared using a Student’s t test and Welch t test, respectively. Transcribing error rates for each stage were compared using a χ² test.

Results The mean IPChx delivery time during the active period was 50.2 hours (range 24.7 to 75.7), a decrease of 23.7 hours (95% CI –15.4 to 62.8) compared with the control period (p=0.228). There was a notable decrease in