Aim and objectives The aim of this study was to assess the efficiency and real life safety of intravenous artesunate (IA) for the treatment of severe malaria.

Material and methods We performed a retrospective, monocentric, observational study. All patients who received IA from January 2016 to September 2019 were included. Data were collected from the pharmacy service computerised system, patient records and nominative expanded access authorisation forms. The primary endpoint was efficiency, assessed by the microscopic negativation of the parasitaemia. The secondary endpoint was safety, assessed by monitoring haemoglobin, transaminases, blood platelets, kaliemia and creatinemia.

Results Sixty-nine patients were treated with IA in our hospital. Among all patients, 59 patients (86%) had not received chemoprophylaxis. The average time between leaving the infected zone and hospital admission was 11±7 days. Patients received 3.1±0.7 doses of IA. Sixty-five patients presented at least one criterion requiring the use of IA (the most common was >4% hyperparasitaemia in 39 patients). Forty-six (67%) patients had a microscopic negativation of their parasitaemia after 3 days of treatment and 100% at day 7. Regarding tolerance, only 52% had a decrease in their haemoglobin level of >2 g/L during the whole hospitalisation. Platelets and transaminase values were normal (184–440 G/L and <35 UI/L, respectively) after 7 days of treatment in 51 patients. Nine patients exceeded the basal level for creatinaemia (45–101136/ejhpharm-2020-eahpconf.405 E Calzavara*, L Gambitta, E Galfrascoli, P Richelmi, V Curci. transaminase values were normal (184–440 G/L and <35 UI/L, respectively) after 7 days of treatment in 51 patients. Nine patients exceeded the basal level for creatinaemia (45–84 mmol/L) for more than 1 day. Three adverse events (anaemia) were reported to the pharmacovigilance centre, among which none was severe.

Conclusion and relevance The IA treatment was effective and well tolerated in all patients. These results seem to be in favour of a broader and ease of use of IA.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

5PSQ-089 CYTOKINE RELEASE SYNDROME REACTION: THE CLINICAL PHARMACIST IN THE CHIMERIC ANTIGEN RECEPTOR T CELL THERAPY TEAM

M Del Vecchio*, E Mirrini, L Lastra Pantani, G Lo Cicchito, E Ruffino, G Handschin, V Ladisa. Ircs Istituto Nazionale Dei Tumori, Pharmacy, Milano, Italy; Università Degli Studi Di Milano, Pharmacy, Milano, Italy

Background and importance Chimeric antigen receptor (CAR) T cell therapy is being studied for the treatment of haematologic malignancies. CARs are synthetic receptors that reveal the specificity, purpose and metabolism of T cells. The first step in making CAR-T cells is to insert a gene into the cell in order to express a new antigen binding site on its surface and to redirect the T cell to the new target. Since CAR-T is a personalisation, the medicine should be administered to the patient for whom it was intended. For this reason, the clinical pharmacist plays a key role in clinical surveillance, care coordination and patient education.

Aim and objectives The aim of this work was to assess the pharmacist as risk manager in a CAR-T multidisciplinary team comprising professionals who take care of cancer patients. Beyond the implementation of the hospital system, the pharmacist is essential in the follow-up of patients after administration because of the complexity of the side effects as well as antidote management.

Material and methods Cytokine release syndrome (CRS) is one of the most common side effects of CAR-T therapy, in which there is a fast release of cytokines involved in the inflammatory process. It seems that the onset of CRS is related to the efficacy of the therapy, even though this side effect is...