Abstracts

115G-003 STUDY OF THE USE OF INTRAVENOUS IMMUNOGLOBULINS DURING THE FOURTH QUARTER OF 2018 AND ANALYSIS OF ITS OFF-LABEL USE
S Izquierdo Muñoz, A Pariente Junquera*, A De Frutos Soto. Hospital Clínico Universitario De Valladolid, Farmacia Hospitalaria, Valladolid, Spain
10.1136/ejhpharm-2020-eahpconf.3

Background and importance The use of intravenous immunoglobulins (IVIg) has increased as a result of their therapeutic usefulness in a great number of diseases. Despite this, IVIg label indications remain limited, so it is interesting to study their off-label use.

Aim and objectives To describe the use of IVIg in our hospital for 3 months and to determine if they have been used for labelled indications.

Material and methods This was a retrospective study (October–December 2018) and a descriptive analysis of the use of IVIg per patient and clinical indication. Information was collected from the hospital’s information systems and the computer records of the Farmatools software.

Results Eighty-nine patients received IVIg during the study period, with an average age of 61 years at the end of the study (3 months–86.7 years); there were 40 (45%) men and 49 (55%) women. When IVIg were used as replacement therapy, the dosage used was 200–400 mg/kg every 3–5 weeks. In the remaining indications, the dose used per treatment cycle was 1–2 g/kg divided over 2–5 days. IVIg were used for labelled indications in 80% of patients (71/89) compared with 20% for off-label indications (18/89). Among the latter, the indications were: demyelinating neuropathies (6/18), myasthenia gravis (2/18), myopathies (2/18), encephalitis/encephalomyelitis (2/18), Morvan syndrome (1/18), syndrome paraneoplastic (1/18), refractory atopic dermatitis (1/18), paraneoplastic dermatomyositis (1/18), scleroderma (1/28) and anti-synthetase syndrome (1/18).

Conclusion and relevance The use of IVIg in unauthorised indications was frequent (20%), mainly in the field of neurology. This justifies the development of a protocol for the use of IVIg in this field for those indications with more scientific evidence and more common use: demyelinating neuropathies, myasthenia gravis and myopathies.

REFERENCES AND/OR ACKNOWLEDGEMENTS
No conflict of interest.

115G-004 ECONOMIC COMPARISON OF THERAPEUTIC ALTERNATIVES FOR FIRSTLINE TREATMENT OF MULTIPLE MYELOMA
MD Gil-Sierra*, S Fenix-Caballero, MDP Briceño-Casado, M Dominguez-Cantero, EJ Alegre-Del Rey. Hospital Universitario De Puerto Real, Pharmacy, Puerto Real, Spain
10.1136/ejhpharm-2020-eahpconf.4

Background and importance A combination of daratumumab, bortezomib, melphalan and prednisone with daratumumab for maintenance (DVMP-D) has been authorised as a firstline treatment for patients with newly diagnosed multiple myeloma who are ineligible for stem cell transplantation (NDMM-NoT). An economic comparison of different alternatives available was performed, according to their economic impact.

Aim and objectives To develop an economic comparison among the therapeutic alternatives in NDMM.

Material and methods A bibliographic research was conducted in MEDLINE and EMBASE databases to identify treatment schemes with daratumumab, lenalidomide, bortezomib and thalidomide, or their combinations, in NDMM. Only authorised treatments used in clinical practice were selected. Efficacy was assessed as progression free survival. Randomised clinical phase II–III trials, which compared selected therapeutic alternatives in patients with NDMM-NoT, were included. Articles in Spanish or English language were selected. Costs of the first year of treatment were calculated from a National Health System perspective, using notified laboratory sale prices and including taxes (4% VAT) and a 7.5% rebate (in accordance with the national Royal Decree Law 8/2010). Associated direct costs in the first year were added. Incremental costs of each therapeutic alternative with respect to the reference was quantified. DVMP-D was taken as the reference in the cost incremental study.

Results Results of the systematic review included 593 studies. Nine trials were selected which analysed seven drug combinations: DVMP-D; bortezomib+melphalan+prednisone (VMP); melphalan+prednisone+thalidomide with thalidomide for maintenance (MPT-T); lenalidomide+dexamethasone for maintenance (RD); lenalidomide+dexamethasone for 18 cycles (RD18); melphalan+thalidomide+prednisone (MTP); and bortezomib+lenalidomide+dexamethasone with lenalidomide+dexamethasone for maintenance (VRD-RD). Daratumumab +lenalidomide+dexamethasone with daratumumab for maintenance was excluded for non-use by the National Health System (combination not funded). A visit to outpatients was estimated at 167€, according to the bibliography. Treatment costs for the first year were: DVMP-D 184 214€; VMP 44 435€; MPT-T 44 435€; RD 81 520€; RD18 81 520€; MTP 77 209€; and VRD-RD 104 850€. Regarding incremental costs, the most expensive scheme was the reference treatment (DVMP-D), followed by VRD-RD (−79 364€). The cheapest combination was MPT-T (−164 094€), followed by VMP (−139 779€).

Conclusion and relevance There are seven treatments, including daratumumab, lenalidomide, bortezomib and thalidomide for NDMM-NoT. The most expensive schemes for the first year of treatment are DVMP-D and VRD-RD; and the cheapest combinations are MPT-T and VMP.

REFERENCES AND/OR ACKNOWLEDGEMENTS
None.

No conflict of interest.

115G-005 ABC-VEN CROSSTAB ANALYSIS: A DECISION MAKING SYSTEM FOR ANTICANCER MEDICINES
M Fragiadaki*, E Rnaki, M Petrongonas, L Tzimis. Chania General Hospital, Pharmacy, 73300-Chania, Greece
10.1136/ejhpharm-2020-eahpconf.5

Background and importance Health systems have limited resources, and these should be used responsibly to optimise outcomes for patients. The ABC (pareto analysis for expenditure) and VEN (health impact) methodology was developed by the WHO to help hospitals evaluate current spending.

Aim and objectives A decision making system was developed for inventory management of chemotherapy agents and medicines to treat their adverse reactions (CA-MtADR). As these medicines are expensive, we formulated an ABC-VEN matrix