parallel testing was performed using Chemfort VA from which the filter system had been removed.

Results

No drug was found in any of the test samples with the intact air filter system in Chemfort VAs, either fresh, following aging for 3 years or after 7 days of exposure to drug vapours. Recovered vapour was consistently found in the positive control samples which had Chemfor VAs without a filter system. Mean±SD (n=5) levels were 69±34 and 35±20 ng for cyclophosphamide and 5-FU, respectively.

Conclusion and relevance

The results confirm the efficacy of the Chemfort air filtration system, even after 7 days of exposure to drug vapour or a shelf life of 3 years.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest

Corporate sponsored research or other substantive relationships:

The author is an employee of Simplivia Healthcare.

3PC-013

MANAGEMENT OF NON-ADMINISTERED CHEMOTHERAPY PREPARATION: AN OPPORTUNITY TO MINIMISE DRUG WASTE IN ONCOLOGY PHARMACY

1A El Assil*, 1C Adade, 2R Issa, 3H Bechar, 2A Zedou, 1A Fassi Finti, 1,2Y Rahali, 1Mohamed V University-Faculty of Medicine and Pharmacy, Department of Pharmacy, Rabat, Morocco; 2National Institute of Oncology-Ibn Sina University Hospital, Department of Pharmacy, Rabat, Morocco

Background and importance

The non-administration of cytotoxic preparations contributes significantly to drug waste and costs in the centralised cytotoxic preparation units (CCPU). Monitoring and proper management of returns of preparations could reduce drug wastage.

Aim and objectives

The aim of the study was to analyse the reasons for returns and quantify reused cytotoxic preparations before and after implementation of corrective measures.

Material and methods

A prospective study was conducted at our hospital pharmacy at the National Institute of Oncology over two 8 month periods (January to August 2018, January to August 2019). Data on the reasons, content and fate of returns were collected and analysed.

Results

At the end of the first period, 125 preparations corresponding to 90 prescriptions were returned. Absence of the patient was the most common reason (56%), followed by crystallisation of product (19%), mainly taxanes. Docetaxel was the most returned preparation (17.6%). The corrective measures taken were: optimisation of communication between the CCPU and clinical services, strict dilution of taxanes and etoposide in glass vials and updating of physicochemical and microbiological stability sheets for cytotoxics. During the two study periods, we found a similar number of returns (0.6%) corresponding to 15 851 and 16 874 €. The absence of the patient, the most frequent reason in the two periods, decreased from 56% to 40%. Product crystallisation decreased considerably (19% vs 2%). The number of re-sighted preparations increased from 2.4% to 7%. Reusing corresponded to 64€ and 2760€ for period 1 and period 2, respectively.

Conclusion and relevance

This study found a high number of preparations returned due to crystallisation by taxanes via interactions containing content. Updating the stability data of the anticancer drugs used in our hospital based on recent international guidelines and follow-up of chemotherapy preparations had a significant impact on the reasons and cost of returns. Vigilance by pharmacists is required when validating prescriptions in order to minimise the avoidable causes of chemotherapy wastage and to make savings.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

3PC-013

COMPARATIVE BIOPHYSICAL STABILITY STUDY OF ZIV-AFLIBERCEPT (ZALTRAP, OPENED VIALS) STORED AT 4°C AND ROOM TEMPERATURE FOR 2 WEEKS

1Hermosilla Fernández*, 2A Salmeron Garcia, 3Cabeza, N Navas. 1Biomedical Research Institute Ibs Granada, Analytical Chemistry-Science Faculty-University of Granada, Granada, Spain; 2Biomedical Research Institute Ibs Granada, Clinical Pharmacy-San Cecilio University Hospital, Granada, Spain

Background and importance

Ziv-aflibercept (Zaltrap) is an Fc-fusion protein used in the treatment of colorectal cancer. Changes in the structure or aggregation, which may arise from handling and storage, may affect the efficacy of the treatment and it could cause severe immune reactions in patients. The shelf life indicated by the manufacturer for the opened vial is 3 years; there is no information on the surplus of opened vials.

Aim and objectives

To compare the biophysical stability of ziv-aflibercept (Zaltrap) stored refrigerated at 4°C and at room temperature protected from light for 2 weeks.

Material and methods

Three independent samples of fresh ziv-aflibercept were collected from hospital and stored in amber glass vials protected from light at 4°C and at room temperature.

- Particulate: dynamic light scattering (DLS) readings were carried out in a protein solution DynaPro-99 system dynamic light scattering module equipped with a temperature control micro sampler (Wyatt, Santa Bárbara, California, USA) for obtaining the hydrodynamic radius and polydispersity.
- Tertiary structure: intrinsic tryptophan fluorescence measurements were carried out on a Cary eclipse spectrofluorometer (Agilent, Santa Clara, California, USA). Each spectrum was reduced to a single a dimensional number (centroid):

$$\text{C} = \frac{\sum_{i=1}^{n} (f_i) x_i}{\sum_{i=1}^{n} f_i}$$

LMW aggregates: size exclusion chromatography (SEC) was used. The analysis was performed by liquid chromatography using an Agilent 1100 chromatograph equipped with a quaternary pump, degasser, autosampler, column oven and photodiode array detector (Agilent).

Results

No significant changes were detected in the samples stored refrigerated by any of the techniques used: aggregation did not occur, supported by the results from DLS and SEC.

No changes in conformation were detected: fluorescence centroid was maintained.

Significant changes were detected in the samples stored at room temperature: the start of aggregation was detected by SEC but larger aggregates were not detected by DLS. Centroid value increased significantly, indicating conformational modifications.
USE OF CABAZITAXEL AND REDUCTION OF WASTE: THE POTENTIAL OF DRUG DAY

Background and importance Cabazitaxel is an antineoplastic agent indicated for the treatment of adult patients with metastatic castration resistant prostate cancer, previously treated with a docetaxel containing regimen. The formulation available on the market consists of a vial of concentrate which, after dilution, makes 60 mg of drug available. The recommended dose of cabazitaxel is 25 mg/m2 administered every 3 weeks and generally doses range from 20 to 50 mg. This results in waste with a strong economic impact considering the cost of the drug. From January to September 2019, 12 patients were treated with cabazitaxel in hospital for a total of 64 administrations (average dose of 37 mg) on 49 different days. Consumption was increased compared with the previous year (in 2018 from January to September 7 patients were treated and 42 administrations). It is appropriate to check the advantages of introducing drug day (administration of the drug on the same day of the week for all patients requiring therapy).

Aim and objectives The objective of the study was to verify the current wastage of cabazitaxel, and the potential waste with the introduction of drug day.

Material and methods Leftover drug was calculated for each day of administration (49 days). In the case of multiple administrations on the same day, leftover drug was calculated based on vial sharing. The same method was used to calculate leftover drug for every week of therapy, as if the therapies had been administered on the same day (drug day).

Results In 9 months, 2370 mg of cabazitaxel were administered and the waste calculated from leftover of single therapy days was 1350 mg (+57% compared with ideal consumption). Projecting consumption and waste at 12 months gives an annual consumption of 4960 mg of cabazitaxel (83 vials, of which 30 are considered waste).

With the introduction of drug day, waste would decrease to 810 mg (+34% compared with ideal consumption) and the projection would lead to an annual consumption of 4240 mg (71 vials, of which 18 would be considered as waste).

Conclusion and relevance The introduction of drug day for cabazitaxel is fundamental to reduce waste, optimise resources and safeguard costs.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.