adherence to the intravenous potassium programme after its completion 5 years ago.

Material and methods A retrospective observational study was conducted between June and December 2019. Potassium CS and PS used in our hospital were identified and the potassium mEq消费 calculated with both methods were calculated. The intensive care unit was excluded because its use of CS is accepted by the ISMP.

Results Two types of CS were found: potassium chloride 2 mEq/mL and monopotassium phosphate 1 mEq/mL. Regarding PS, eight types were available: glucose 5%+10 mEq K, glucose 5%+15 mEq K, glucose 5%+20 mEq K, glucosalone+10 mEq K, glucosalone+15 mEq K, physiological+10 mEq K, physiological+15 mEq K and physiological+20 mEq K. Potassium concentration was 501 650 mEq in CS and 125 620 mEq K in PS. Therefore, the ratio of potassium consumed using CS was four times higher than that consumed in PS.

Conclusion and relevance After 5 years from the end of the programme implemented to reduce the consumption of potassium CS in our hospital, there has been a loss of adherence to the protocol that has led to a considerable increase in CS consumption, multiplying its use by four versus the recommended SP. Therefore, it is necessary to circulate the protocol for the use of intravenous potassium chloride, which must be maintained over time through annual audits and continuous dissemination sessions.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

5PSQ-133 EVALUATION OF A QUALITY MONITORING PROGRAMME FOR INTRAVENOUS FLUID MANAGEMENT

1Guerfala, A Ben Cheikh Brahim, NE Tlili; 2LM Khaleda; 3Abbassi, LGuerrina. 1Maternity and Neonatal Hospital of Tunis, Pharmacy, Tunis, Tunisia; 2Charles Nicolle Hospital of Tunis, Pharmacy, Tunis, Tunisia; 3College of Pharmacy of Monastir, Pharmacy, Monastir, Tunisia

Background and importance Intravenous fluid stewardship can support caregivers to optimise the patient’s outcome, avoid fluid overload or electrolyte disorders, and control costs. Implementing a stewardship initiative requires monitoring to guarantee guideline adherence.

Aim and objectives To evaluate the impact of an internal audit on intravenous fluid use and identify opportunities to improve quality monitoring.

Material and methods To evaluate fluid guideline adherence in a Belgian university hospital, an internal audit was organised comprising five QIs, developed by the fluid stewardship programme. The QIs were calculated every 2 weeks over a 6-month period (August 2019 to January 2020), focusing on prescription and labelling, documentation of indication and monitoring of body weight and electrolytes. Every ward steward (22 physicians, 16 nurses) received the results of the first 3 months (T1) in an electronic report. The report’s impact on the QIs between T1 and the following 3 months (T2) was assessed using a χ^2 test and interrupted time series (ITS) analysis. Afterwards, stewards were surveyed on how to further optimise fluid management monitoring.

Results In total, 729 patients (T1: 361; T2: 368) receiving 758 intravenous fluid bags (T1: 381; T2: 377) were screened. QIs on prescription and labelling were close to the target value. The QI ‘documented indication’ was low (21%). ‘Availability of electrolyte values’ increased significantly between T1 and T2 (90.3% vs 96.2%, p<0.05). ITS analysis could not definitely attribute this effect to our intervention. Internal medicine wards had significantly better results for the ‘availability of electrolyte values’ QI compared with surgical wards for RPN ≤60. The absence of pharmaceutical validation and the absence of agitation after the addition of each component had an RPN of 630. The steps with the highest cumulative criticality and the number of failure modes were production and quality control. The most critical sub-step was the aseptic filling in a closed system. A list of possible and achievable actions (n=46) was developed for the ‘critical’ and ‘to control’ failure modes with an appointed pilot for each action.

Conclusion and relevance Pharmaceutical validation was one of the most critical steps in our study. The optimal solution would be to invest in integrated commercial software. Production requires most of the improvements. The acquisition of an automated compounding device would minimise the risk. A second FMEA is needed to assess the impact of the changes undertaken. It will allow us to detect residual risks.

REFERENCES AND/OR ACKNOWLEDGEMENTS

We thank all members of the work team for their involvement. Gérard Landy. AMDEC guide pratique, 2ème édition. AFNOR.

Conflict of interest No conflict of interest