special attention during ICI treatment. This case report suggests a direct relationship between immunotherapy and disorder coagulation events; however, this cannot always be demonstrated but the diagnosis was made by exclusion. Therefore, extensive research in relation to haematological IrAEs and ICIs are necessary.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

Background and importance We present the case of a young patient with T lymphoblastic lymphoma (T-LBL) who developed severe toxicity after receiving an anthracycline based protocol that is generally well tolerated by healthy patients. We assume that the substitution of daunorubicin by doxorubicin due to a nationwide shortage of daunorubicin played a crucial role in developing severe toxicity.

Aim and objectives The 19-year-old man with no previous illnesses was diagnosed in December 2019 with T-LBL, a rare, aggressive neoplasm of precursor T cells that progresses rapidly and requires prompt diagnosis and medical intervention. T-LBL shows morphological and immunophenotypical similarities to acute lymphoblastic leukaemia (ALL). T-LBL treatment is the same as for ALL.

Material and methods The induction protocol consisted of dexamethasone, vincristine, daunorubicin and pegasparginase. Due to a nationwide shortage, daunorubicin (30 mg/m²) was substituted by doxorubicin (25 mg/m²).

Results Chemotherapy was initially well tolerated, but beginning on day 15, the patient developed pronounced mucositis and increased skin toxicity (hand–foot syndrome, grade IV). Moreover, coagulation parameters deteriorated, and repeated transfusions with erythrocytes and platelet concentrates were needed. After administration of pegasparginase on day 31, liver values increased, and finally, the patient had to be transferred to the intensive care unit due to fulminant pancreatitis. After 3 days, the patient could be transferred back to our university hospital due to fulminant pancreatitis.

Conclusion and relevance Our case report underscores the fact that shortages of essential anticancer drugs can have a particular impact on the efficacy and safety of established chemother-apy regimens, as these medicines often have few or no proven effective alternatives.

REFERENCE AND/OR ACKNOWLEDGEMENTS


Conflict of interest No conflict of interest
it emerged that the impact on budget was greater for nivolu-
mab which had a higher survival value than pembrolizumab. This
analysis was a first step in assessing the impact of intro-
ducing a significant new class of treatments, immunotherapy,
comparing two drugs that have totally changed the prognosis of
NSCLC patients.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

5PSQ-154 DETERMINATION OF GENETIC POLYMORPHISMS OF
THE DIHYDROPYRIMIDINE DEHYDROGENASE GENE IN
REAL CLINICAL PRACTICE AS PREDICTORS OF SEVERE
FLOWOPYRIMIDINE ASSOCIATED TOXICITY
1MD Alvarado Fernández, 1L Rendón De Lope, 1L Villalobos Torres, 1JA Marcos Rodríguez,
1C Castillo-Martin*, 1M Murillo Izquierdo. 1Hospital Universitario Virgen Macarena,
Farmacia, Seville, Spain; 2Hospital Alto Guadalquivir, Farmacia, Jaén, Spain

Background and importance Fluoropyrimidines are antineo-
plastic drugs used for the treatment of many types of solid
 tumours. Approximately 80–90% administered is metabolised
by the enzyme dihydropyrimidine dehydrogenase (DPYD).
Partial or total deficiency of this enzyme is related to severe
toxicity and in some cases it can cause the death of the
patient.

Aim and objectives The aim of our study was to determine
the frequency of these polymorphisms in the DPYD gene in
patients treated in our hospital, and to identify those patients
with a predisposition to excessive toxicity if they are exposed
to fluoropyrimidines.

Material and methods Genetic analysis of the DPYD gene was
performed on all patients who started treatment with fluoro-
pyrimidines between September 2017 and April 2020. The
variables collected were: age, type of tumour diagnosed and
toxicity presented in the first six treatment cycles according
to the common terminology criteria for adverse events (CTCAE)
classification. Data were obtained from the electronic medical
records (Diraya) and the electronic prescription programme
(Farmis). The polymorphisms studied were rs3918290,
rs55886062, rs67376798 and rs56038477.

Results Genetic analysis was performed on 171 patients.
Median age was 71 years. Most of the diagnoses corre-
sponded to colorectal cancer (81%). Patients presented the fol-
lowing adverse events: digestive toxicity in 59% of patients
(rs55886062, rs67376798 and rs56038477).
42% of patients required drug with-
drawal or dose reduction due to toxicity. Regarding the results
of the polymorphisms studied, 95.3% presented a wild-type
genotype for the analysed variants. 4.7% of patients presented
with some mutated allele (heterozygote): three patients for
rs3918290, three patients for rs67376798 and two patients
for rs56038477, coinciding with the patients who presented
greater toxicity.

Conclusion and relevance The heterozygous patients detected
were at risk of developing severe toxicity when they were
 treated with fluoropyrimidines and they required dose
adjustment of these drugs. The use of these pharmacoge-
netic tools for the determination of polymorphisms of the
DPYD gene in routine practice allows us to predict the
potentially serious toxicity, favouring the individualised use
of these drugs.

REFERENCES AND/OR ACKNOWLEDGEMENTS
Conflict of interest No conflict of interest