reductions were not associated with an increased risk of progression. Bone metastasis is very common in metastatic or locally advanced breast cancer. Since the authorisation for first-line use (PALOMA-2) it has become a standard of treatment for metastatic or locally advanced breast cancer.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

5PSQ-165 INCIDENTE AND MANAGEMENT OF ETOPOSIDE HYPERSENSITIVITY IN PAEDIATRIC PATIENTS

N Báez Gutiérrez, H Rodríguez Ramallo*, C Álvarez Del Vayo Benito, B Fernández Rubio. Virgen Del Rocío University Hospital, Pharmacy, Seville, Spain

10.1136/ejhpharm-2021-eahpconf.284

Background and importance Etoposide is widely used in paediatric chemotherapy treatment, although hypersensitivity can be severe and treatment limiting. There are conflicting data in the literature regarding the incidence of etoposide hypersensitivity reactions in adults and children. Reported rates of hypersensitivity range from 2% to 51%.

Aim and objectives The aim of this study was to assess the incidence of etoposide hypersensitivity and to evaluate potential risk factors for hypersensitivity in paediatric patients in a third level hospital.

Material and methods A retrospective observational study was conducted in paediatric patients treated with etoposide from June 2013 to September 2020. Data collected were: demographics (age, sex), diagnosis, dose, infusion rate, infusion concentration, symptoms of hypersensitivity, CTCAE grade of hypersensitivity reaction and management of hypersensitivity reaction. Data were collected from the electronic medical records and pharmacy records.

Results 213 patients were treated with etoposide during the period of the study. Mean age was 6.73 (range 0.16–17) years and 58.68% were male. Indications for etoposide were lymphocytic acute leukaemia 20.18%; neuroblastoma 16.9%; Ewing’s sarcoma 16.9%; Hodgkin’s lymphoma 11.27%; myeloid acute leukaemia 8.9%; and other 25.82%. Doses administered ranged from 200 to 100 mg/m² and from 2.5 to 6 mg/kg. Median infusion rate was 55 (2–200) mg/hour. Median infusion concentration was 0.3 (0.2–0.5) mg/mL. Hypersensitivity reactions occurred in 23 (10.8%) patients; 3 and 20 cases were classified as grade I and grade II of the CTCAE, respectively. Symptoms of hypersensitivity were lip cyanosis (n=7), pruritus (n=7), flushing (n=7), nausea (n=5), cutaneous rash (n=5), cough (n=4), rhinocconjunctivitis (n=1), hypertension (n=1), shortness of breath (n=1), abdominal pain (n=1), facial paraesthesia (n=1), fever (n=1) and angioedema (n=1). All hypersensitivity reactions were successfully managed with medication (corticoids and antihistamines). Subsequent doses were administered with premedication and reduction of the infusion rate. We did not observe any statistically significant associations between the variables collected and the appearance of hypersensitivity reactions.

Conclusion and relevance The incidence of hypersensitivity reactions was moderate, affecting approximately 10% of patients. All hypersensitivity reactions were mild and were resolved by standard treatment. We were unable to establish if any of the variables collected were risk factors for hypersensitivity reactions, probably due to the small sample size derived from the rarity of the event. Other studies have observed a relationship between the rate of infusion and the concentration of etoposide.
Background and importance 
Treatment goals for advanced or metastatic breast cancer include not only delaying progression of the disease and extending survival, but also maintaining or improving the quality of the patient’s life. New targeted therapies, such as cyclin dependent kinase (CDK) 4/6 inhibitors, have improved patient outcomes with hormonal receptor positive, HER negative, metastatic breast cancer compared with conventional single agent endocrine therapy. They contribute to clinical benefit but at the same time they are the cause of complex and potentially severe adverse events that require good clinical management of toxicities.

Aim and objectives 
To assess the safety of CDK4/6 inhibitors, analysing the relevant adverse drug reactions (ADRs) and reviewing the clinical management of toxicities.

Material and methods 
A retrospective observational study was conducted in a second level hospital. We assessed the safety of three CDK4/6 inhibitors (ribociclib, palbociclib and abemaciclib), reviewing the medical and pharmaceutical records of all patients that attended the pharmacy department from January to March 2020. Collected data were: age, ECOG, cancer stage, metastatic location, type of CDK4/6 inhibitor in combination with endocrine therapy, ADRs, grade and clinical management strategies to find the optimal therapy for each patient.

Results 
58 patients were included, median age 55 years (75–39), and 67% (39) received ribociclib, 29% (17) received palbociclib and 4% (2) received abemaciclib. ECOG at the beginning was 0 in 55% (32) of patients, 1 in 28% (16) and 2 in 10% (6). 100% of patients had disease stage IV and the main metastatic location was bone (87%). Average number of cycles was 10 (1–36). 30% (18) patients had severe ADRs (grades 3–4), approximately 3 severe ADRs per patient. Neutropenia was the most common ADR grade 3/4 (85%) related to CDK4/6 inhibitors, and was highest with ribociclib compared with the other CDK4/6 inhibitors, followed by gastrointestinal disorders (5%). These severe ADRs required dose reductions in 15% (31), temporary interruptions in 37% (79) and permanent discontinuation of treatment in 4% (7). 19 patients also needed supportive treatments.

Conclusion and relevance 
In spite of the manageable safety profile of CDK4/6 inhibitors in clinical practice, the frequency of severe ADRs associated with these treatments makes consistent close monitoring of side effects and toxicity necessary due to inter-patient variability, along with practical management strategies to find the optimal therapy for each patient.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest