Material and methods Five essential comparing data points (ED) were identified: API, dosage, delivery unit (DU) price, daily intake and annual consumption. Coherent comparison ratios were used: intake/DU and price/intake. An intuitive Excel file was built to compare two ES according to a chosen consumption. A notice of use was written, allowing the test phase on two of our ES: trimebutine in a single use powder for solution (SUP) and a multidose syrup.

Results Typing ED increments a database. In the calculator tab, two scrolling menus allow the user to select the comparison. The calculator then visually shows the economic impact of the switch: red for increased cost and green for reduced cost. The intermediate calculations are always visible. Two hypotheses were made for the case of multidose ES depending on whether the multidose was fully used or not. A graphic shows the results in a visual way, with a number in euros and a number as a percentage of annual costs. A history is available. Tests on trimebutine were conclusive: they rapidly showed the economic interest of the single use powder for oral solution over the multidose syrup. The SUP was compared with the multidose syrup that can deliver up to 15 doses. The calculator showed a realisable reduction from 23% to 95% of the annual costs by choosing the powder. Withdrawal of the syrup will be suggested to the drug commission.

Conclusion and relevance This calculator is an efficient tool that helps the pharmacists in the management of the available references in the institution. It allows the user to rapidly and easily estimate the economic aspect of a switch, a central issue in drug selection.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

ORGANISATIONAL CHALLENGES OF THE PHARMACY SERVICE AS A CONSEQUENCE OF THE COVID-19 PANDEMIC

A Moreno*, MJ Otero Lopez, MR Martín Muñoz, E Fernandez Dominguez, S Jimenez Cabrera, MP Valverde Merino, AMA Lopez Gonzalez, L Ollero Malagon. Complejo Asistencial Universitario De Salamanca, Pharmacy, Salamanca, Spain

10.1136/ehjpharm-2021-eahpconf.29

Background and importance The COVID-19 pandemic has required reorganisation of our pharmacy service procedures to guarantee adequate pharmaceutical care and protect the safety of caregivers and patients.

Aim and objectives To describe the actions taken by the pharmacy service and their likely repercussions for the future.

Material and methods A retrospective analysis was conducted of the actions carried out during the 10 week period, 12 March 2020 to 21 May 2020, the period that corresponds to the first wave of the COVID-19 pandemic and its aftermath. We analysed hospital data and documentation generated in the pharmacy during the pandemic and the subsequent de-escalation and re-escalation periods.

Results During the first wave of the pandemic, the hospital treated 1088 COVID-19 patients. At the peak of the pandemic, there were 501 patients hospitalised with 57 in intensive care units.

The principal actions carried out were:

- Modification of the make-up of staff in charge of pharmacy activities with 24 hour reinforcement and work from home.
- Establishment of new internal and external communication channels with the administration, healthcare professionals and patient associations to continually communicate changes.
- Management of medications for COVID–19 and critically ill patients, establishment of stock strategies and shortages management.
- Increasing storage space and re–dimensioning the kardex system.
- Configuration of new hospital units and hospitals (including hotel hospitalisation), redesigning healthcare circuits, hospital discharges and return–to–stock procedures (quarantine).
- Preparation of new standardised intravenous mixtures and medication kits.
- Participation in protocols for COVID treatment, and incorporation of new protocols and alerts into the computerised physician order entry system.
- Design and implementation of a new virtual consultation system and home delivery of medications. During the first wave of 10 weeks, there were 3450 virtual consultations and home deliveries of medications, involving 74.8% of all outpatients. This value later went down and has remained at 60%.

Conclusion and relevance In retrospect, the COVID-19 pandemic presented serious challenges to our pharmacy service in terms of assuring pharmaceutical care for both COVID and non-COVID patients. Some changes have become permanent and represent innovations in pharmacy services.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

NEW REQUIREMENTS OF OUTPATIENTS IN THE COVID-19 ERA: ADAPTING PHARMACEUTICAL CARE

LF Esther*, BL Juan José, DMG María, JA Ilidoo Becerra, LS Beatriz, LG Natalia, SME Ramón, AV Amaya, SC Maite, NS Lorena. Complejo Hospitalario De Navarra, Pharmacy, Pamplona, Spain

10.1136/ehjpharm-2021-eahpconf.30

Background and importance Adapt the outpatients care activity to the scenario arising out of the COVID-19 pandemic.

Aim and objectives Reorganisation of the area, non in-person consultation, medication home delivery (MHD) and reduce patient attendance at day hospitals.

Material and methods Phase 1 (P1): reinforcement of human resources, increase and easy the presential and telepharmacy schedule, adaptation of the facilities.

Phase 2 (P2): advanced preparation of the medication, MHD, substitution of intravenous treatments by subcutaneous treatments.

The telepharmacy and MHD were conducted at patients’ request. Delivery routes and alternative urgent delivery systems were established. P1 activities began 2 weeks prior to the announcement of the State of Alarm (SoA, 16 March 2020) and P2 began and continues for vulnerable patients. Our
project is currently underway in a proactive, selective and continuous way.

Results Activities were analysed during 2020, weeks 12-19 (16 March to 10 May 2020) and compared with theoretical activity during the same period in 2019, with an increase in activity (+21%). The difference between the sum of in-person and telematic consultations and the theoretical consultations for the period was named after omitted consultations.

Overall activity in weeks 12–19 was 5550 consultations, of which 4414 (79.5%) were in-person and 1136 (20.5%) telematic. The estimated activity would have been 7030 consultations, and 1480 (21% of the theoretical ones) have been omitted. In-person activity decreased from 5973 patients between weeks 12 and 19 in 2019 to 4414 in 2020 (−23.3%).

Distribution of the 1136 MHD: week 12 (30), week 13 (131), week 14 (232), week 15 (190), week 16 (168), week 17 (155), week 18 (115) and week 19 (115). Waiting times for in-person consultation were reduced from an average of 5.2 min/patient in the pre-alarm period to 3 min during the alarm (−42.3%).

Conclusion and relevance Our data may be used to detect areas for improvement; consultations should be made proactively and tools are needed to qualitatively analyse omitted activity. A system is needed to account for tele-assistance that has not resulted in dispensing medication or MHD.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest