Abstract 5PSQ-209 Table 1

<table>
<thead>
<tr>
<th>Anticholinergic scale</th>
<th>Patients with AB</th>
<th>Mean AB score</th>
<th>Mean anticholinergic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticholinergic cognitive burden scale</td>
<td>62.8% (n=98)</td>
<td>2.1</td>
<td>Medium</td>
</tr>
<tr>
<td>Anticholinergic risk scale</td>
<td>32.1% (n=50)</td>
<td>1.8</td>
<td>Medium</td>
</tr>
<tr>
<td>Chow’s list</td>
<td>51.9% (n=81)</td>
<td>2.1</td>
<td>Medium-low</td>
</tr>
<tr>
<td>Anticholinergic drug scale</td>
<td>55.1% (n=86)</td>
<td>2.4</td>
<td>Medium</td>
</tr>
<tr>
<td>Anticholinergic activity scale</td>
<td>50.6% (n=79)</td>
<td>2.6</td>
<td>Medium</td>
</tr>
<tr>
<td>Anticholinergic load scale</td>
<td>54.5% (n=85)</td>
<td>1.8</td>
<td>Medium-low</td>
</tr>
<tr>
<td>Clinician rated anticholinergic scale</td>
<td>51.3% (n=80)</td>
<td>1.9</td>
<td>Medium</td>
</tr>
<tr>
<td>Duran’s scale</td>
<td>54.5% (n=85)</td>
<td>1.9</td>
<td>Medium</td>
</tr>
<tr>
<td>Anticholinergic burden classification</td>
<td>41.0% (n=64)</td>
<td>3.7</td>
<td>High</td>
</tr>
<tr>
<td>Drug burden index</td>
<td>72.4% (n=113)</td>
<td>1.2</td>
<td>High-medium</td>
</tr>
</tbody>
</table>

Conclusion and relevance Patients included were heavily poly-medicated, often with drugs with anticholinergic activity. Most anticholinergic scales estimated at least a medium anticholinergic risk, predicting a relatively high risk for anticholinergic adverse events. This work highlights the differences in anticholinergic scales when estimating the anticholinergic risk and its capacity to recognise this risk in the studied population.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

5PSQ-211 RETROSPECTIVE EVALUATION OF THE DOCUMENTATION OF ALLERGIC AND IDIOSYNCRATIC ADVERSE DRUG REACTIONS IN THE CONTEXT OF THE REQUIREMENTS CONCERNING A CLINICAL DECISION SUPPORT SYSTEM

<table>
<thead>
<tr>
<th></th>
<th>5PSQ-211</th>
</tr>
</thead>
</table>
| Medication errors relating to similar or misleading manufacturer specific drug packaging and labelling | 1M Jeske Msc*, 1S Bischinger, 1M Laddsatter, 1N Reider. 2Innsbruck University Hospital, Pharmacy Department, Innsbruck, Austria; 3Innsbruck University Hospital, Department of Dermatology-Venerology and Allergology, Innsbruck, Austria

Background and importance Allergies should be visible on all patient specific pages or screens of the electronic medical record in the hospital information system. The computerised physician order entry system must have a tiered severity rating for allergies based on the patient’s reaction to the drug. Limiting alert fatigue from drug intolerances that are not true allergies and providing clear warnings to staff during medication order entry is crucial for a clinical decision support system (CDSS).

Aim and objectives This study analysed the current practice of documentation of information associated with allergic or idiosyncratic adverse drug reactions (ADRs) in patients admitted to the department of dermatology in order to improve documentation of allergy information and establish a CDSS. The secondary objective was to examine the adherence of follow-up appointments for verification of potential ADRs to improve organisational procedures.

Material and methods Medical reports and entries from patients admitted to the department of dermatology over 4 years due to an ADR were retrospectively reviewed. 611 were considered eligible. A subpopulation of 190 ADR related cases was reviewed to examine adherence to follow-up appointments.

Results In 23.2% (n=142) of patients, the documentation was incomplete: in 1.6% (n=10) the tested alternative drug was not entered, in 5.6% (n=34) the verified allergy/intolerance was not documented and in 16% (n=98) both were missing. In 28.8% (n=90), when patients got a permanent allergy pass a corresponding entry was made with the brand name and not with the international non-proprietary name. In 53 (27.9%) of 190 cases, patients with follow-up appointment recommendations did not keep their appointment at the department of dermatology’s outpatient clinic to verify the concern. If patients had to arrange the appointment on their own (n=51), 49.0% (n=25) did not keep their appointment. Only patients with follow-up in the allergy unit of the department were documented completely in the drug allergy/intolerance field.

Conclusion and relevance Any patient’s allergy information entered into the information technology system must be accurate to allow for clinical decision support screening. Both potential and verified ADRs should be documented, but they must be clearly distinguishable. Fixed appointments improve adherence of follow-up appointments for verification of potential ADRs.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest
data confirmed the main problem with parenteral products’ primary packaging and indicated an increased risk of medication errors caused by soundalikes-lookalikes in the anaesthesia and intensive care sector. The university hospital pharmacy’s product portfolio must be regarded as a limitation of this work, as it only has a selected range of pharmaceuticals throughout Austria. A further limiting factor is CIRSMedical itself, as there is a general focus on errors, and there is no specialisation for identifying medication errors.

Conclusion and relevance Evaluation of the manufacturer’s implementation showed an inconsistent fulfilment of the recommendations of the working group SaLa and existing security gaps in the design of drug packaging. Some companies’ pharmaceutical packaging is very well thought out, while labeling on ampoules is hardly legible in others. Still, many pharmaceutical companies tend to prioritise marketing considerations when selecting the design of labels and packaging, and ignore human factors. Professionals, legislation and the pharmaceutical industry must be involved to reduce medication errors caused by misleading manufacturer specific drug packaging and labelling.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

[SPSQ-212] NUTRITIONAL SUPPORT AND INTERACTION WITH ONCOLOGICAL TREATMENT IN BREAST CANCER

Mª Martín Rufo*, L. Quesada Muñoz, A. Díaz Gago, E. Delgado Silva, M. Muñoz García, C. Palomar Fernandez, A. Alvarez Diaz, Hospital Ramón Y Cajal, Farmacia, Madrid, Spain

Background and importance Nutritional support in breast cancer patients has an important role during oncological treatment, which varies according to the stage of the breast tumour. When surgery is performed followed by radiotherapy or chemotherapy, some of the possible adverse effects that may occur are caused by the interaction of this treatment with nutritional support.

Aim and objectives To investigate the possible drug–food interactions that can occur in breast cancer patients.

Material and methods We conducted a systematic review through searches in the databases PubMed, Scielo, Medline-Plus, Google Scholar and other sources, such as the National Cancer Institute and the World Health Organization, on possible food–drug interactions in patients with breast cancer. Inclusion criteria were works published in English or Spanish, from 2008 to 2019, and related to the treatment used in breast cancer. Key terms used were: breast cancer, drug–food interaction, treatment, nutritional support, chemotherapy and grapefruit juice.

Results 23 articles met the inclusion/exclusion criteria. Possible interactions were a consequence of decreased efficacy in treatment, increased toxicity of treatment, poor tolerance to nutritional support or nutritional deficiencies. Interactions could be physical, pharmacokinetic, pharmacodynamic or pharmacological. The probability that patients might experience adverse effects increased as drug plasma concentrations increased and by extrapolating the dynamic response. This situation has been evidenced for exemestane, a treatment in breast cancer whose absorption is influenced by food, particularly by grapefruit juice. It acts as a potent inhibitor of the intestinal activity of CYP3A4 and increases the bioavailability of various drugs. The identified substances in grapefruit juice that act as clinically important inhibitors of CYP3A4 are bergamotin and 6,7-dihydrobergamotin.

Conclusion and relevance There is a proven interaction between grapefruit juice and cancer treatment, particularly in breast cancer. Grapefruit juice contains bergamotin and 6,7-dihydrobergamotin, inhibitors of the CYP3A4 cytochrome P450 isoenzyme involved in the metabolism of various drugs. The inhibition increases plasma concentrations of several drugs, creating a risk of overdose and development of adverse effects. They also block other P450 isoenzymes and protein carriers, such as p-glycoprotein. Therefore, its consumption should be avoided during the treatment of breast cancer.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

[SPSQ-213] HOSPITAL ADMISSIONS AFTER DISCHARGE FROM THE EMERGENCY DEPARTMENT TO HOME WITH COVID-19 TREATMENT

Background and importance During the March and April, over 700 patients were discharged from the emergency department (ED) in a third level hospital to home with treatment for COVID-19. Their characteristics and final outcomes remain unknown.

Aim and objectives To analyse the characteristics and clinical course of COVID-19 patients that were discharged from the ED with home treatment, having to be hospitalised afterwards due to clinical deterioration, and to record the most commonly prescribed drugs for COVID-19.

Material and methods An observational retrospective study was conducted between 1 March and 10 April 2020. Hospitalised patients diagnosed with COVID-19 who had previously attended the ED and were discharged home were included. The following data were recorded: demographic, comorbidities, COVID-19 treatment, fever ≥38°C, tachypnoea, reason for consultation and admission, days between the first and second visit to the ED, days of hospitalisation, length of intensive care unit (ICU) stay if any and reason for discharge.

Results 741 patients were discharged from the ED with home treatment for COVID-19, of whom 68 (9.2%) needed to be hospitalised. Median age was 55.5 years (IR 22–88) and 66.1% were men. 64.7% had comorbidities, mainly: hypertension 44.2%, dyslipidaemia 16.2% and asthma 8.8%. Patients were prescribed as home treatment hydroxychloroquine (100%), azithromycin (75%) and lopinavir/ritonavir (22.1%). Median number of days until patients went back to the ED was 4. The main reasons for consultations were dyspnoea (80.8%), fever (61.7%), coughing (42.6%) and anoxia/dysgeusia (10.3%). 32.4% had tachypnoea and 26.5% had fever. The main reasons for admission were clinical and radiological worsening (85.3%). Median inpatient stay was 7 days (IR 4–13), and 67.7% were hospitalised for

A159