less than 10 days. 8.8% needed critical care and stayed in the ICU for a median of 10.5 days (IR 6–16). The following drugs were prescribed as COVID-19 treatment during hospitalisation: lopinavir/ritonavir (86.8%), hydroxychloroquine (86.8%), corticosteroids (63.2%), ceftriaxone (58.8%), azithromycin (50%), tocilizumab (14.7%), remdesivir (4.4%) and anakinra (2.9%). One patient died and the rest were discharged to home.

Conclusion and relevance Patients who needed hospitalisation due to clinical worsening after being discharged from the ED were mostly middle age men with hypertension. About 80% were admitted for presenting with dyspnoea and rapid radiological progression. Less than 10% needed intensive care, and only one died. Most showed clinical improvement in less than 10 days and were discharged home. Drugs most commonly prescribed for COVID-19 were hydroxychloroquine, azithromycin and lopinavir/ritonavir.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

Background and importance The use of unit dose (UD) has been proved to be a critical tool in supporting the phases of prescription, preparation and administration of therapies, and most importantly in the management of the COVID-19 emergency. All drugs managed in the UD are screened and validated by the pharmacist; during this stage, if any prescription presents a potential risk of adverse events for a patient, the pharmacist is required to insert notes requesting modification of the prescription. These notes provide information about the risk of potential errors such as therapy duration, dosage, administration frequency, interactions, therapeutic indications, dilution, type of formulation and double prescriptions.

Aim and objectives The aim of this work was to demonstrate how the intervention of pharmacists in this process is essential for patient safety and improving clinical risk management.

Material and methods We analysed therapies from all patients managed with UD in the period 1 March 2020 to 31 July 2020, and reviewed the notes entered by the pharmacists. These notes were further divided based on the potential risk of event/error, latent/active and high and low risk (HR, LR), where high risk refers to potentially harmful events for the patient.

Results During the observed period, hospitalised patients receiving the UD regimen were 4649 patients, 413 resulting from COVID-19, including 231 men and 182 women, with a median age of 70 (20–99) years and average number of hospitalisation days of 19 (SD±17). In 334 (81%) prescriptions for these patients, one or more notes were reported from the pharmacist, including 283 HR and 51 LR. The total number of notes entered were 445, with 322 (72%) related to HCQ interactions as follows: (1) 67% medicines that prolong the QT interval which can induce heart rhythm disorders (class IA and III antiarrhythmics, tricyclic antidepressants, antipsychotics, macrolides and quinolones); (2) 3% digoxin; (3) 20% antidiabetics; and (4) 10% antiepileptics.

Conclusion and relevance This study showed that in 72% of notes reported in advance by the pharmacist in the prescription, there was a HR of potential adverse events resulting from the interaction with HCQ. This led to interruption in the use of this drug, as subsequently confirmed by the decision of the EMA (29 May 2020) to recommend its use only in clinical trials.
5. Notes 1396; (HR) 1368 (98%); (LR) 28 (2%)
6. Notes 603; (HR) 30 (5%); (LR) 573 (95%)
7. Notes 224; (HR) 137 (61%); (LR) 87 (39%)

From this analysis, 38% of prescriptions were modified as specifically indicated by the Pharmacist.

Conclusions

This analysis demonstrated how the role of the pharmacist is critical in identifying potential errors that may occur at the time of prescription. This is necessary for minimizing adverse effects for patients during specific therapeutic treatments.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest

No conflict of interest