Conclusion and relevance The results showed that the role of the pharmacist was essential for implementation of the non-profit trial. In fact, they allowed the compounding required by the study design, ensuring safety and quality, with significant cost savings. The stability test demonstrated that the compounding can be stored for up to 6 months under standard conditions.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

3PC-068

LONG TERM STABILITY OF CO-ADMINISTRATION OF BUMETANIDE AND SCOPOLAMINE FOR THE PALLIATIVE CARE UNIT

E Catry, ML Coloul, ML Closet, JL Hubert, LS Sourouy*, JH Bihin, J Jamart, DI Hecq, LG Galanti, University Catholique De Louvain-Chu Ucl Namur, Department of Laboratory Medicine, Yvoir, Belgium; Université Catholique De Louvain-Chu Ucl Namur, Department of Pharmacy, Yvoir, Belgium; Université Catholique De Louvain-Chu Ucl Namur, Scientific Support Unit, Yvoir, Belgium; Université Catholique De Louvain-Chu Ucl Namur, Drug Stability Research Group, Yvoir, Belgium

Background and importance Death rattle occurs in 25–90% of dying patients and is often associated with pulmonary fluid overload. Co-administration of scopolamine (anticholinergic drug) and bumetanide (loop diuretic) could be used to avoid unnecessary fluid overload at the end stage of life.

Aim and objectives The study aimed to investigate the physical and chemical stabilities of the admixture bumetanide and scopolamine, prepared in advance, by a centralised intravenous additive service (CIVAS) with decreased workload and aseptic conditions by a CIVAS with decreased workload and preparation errors).

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

3PC-069

IMPROVING SAFETY AND QUALITY FOR ASEPTIC TRANSFER PROCEDURES IN HOSPITAL PHARMACIES

D Wandel, I Hartmann, C Moelten, R Egger. Kantonsspital Aarau, Pharmacy, Aarau, Switzerland

10.1136/ejhpharm-2021-eahpconf.44

Background and importance Materials used in aseptic manufacturing, such as medical devices (MD), infusion bags (IB), bottles (B), infusion vials (V) and ampoules (A), usually undergo disinfection with alcohol 70%. Alcohol, however, is known not to eradicate all microbes (eg, bacterial spores).

Aim and objectives To explore the effectiveness of a sporicidal aseptic transfer approach using high speed H2O2.

Material and methods For 12 materials and their cardboard packaging (MD, IB, B, V and A), three samplings each at the outer and inner sides of the packaging and at the unpacked material surface were tested with contact plates (108 plates) applied for 5 s. After incubation for ≥72 hours at 20–25°C and 30–35°C, respectively, contact plates were observed for colony forming units (CFU). Unpacked materials were additionally tested, three samplings each (36 contact plates), after sporidicial disinfection using high speed H2O2 (wipes and foam).

Results Without disinfection, CFU appeared on 81% and 33% of contact plates for the outer and inner sides of the cardboard boxes. The surface of the materials showed contamination for 25% of the plates. The microbes found on the plates included bacteria, aerobic endospore formers (Bacillaceae) and Aspergillus. After sporidicial disinfection, microbial growth was seen on none of the plates.

Conclusion and relevance As a risk based approach to contamination control is fundamental for aseptic transfer procedures, our results reflect the strategy for minimising contamination for aseptic manufacturing. Endospore forming bacteria were found as part of the contamination flora on the surface of several material samples. Therefore, a sporidicial agent (eg, high speed H2O2) is required to minimise the contamination risk not only when materials are transferred to clean room classes B and A, but preferably when entering the production area (zone D).

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

3PC-070

EVALUATION OF COMPATIBILITY OF ACETAMINOPHEN WITH MEDICATIONS COMMONLY USED IN INTENSIVE CARE UNITS

A Lombard*, J Vigneron, E D’Huart, B Demore, University Hospital, Pharmacy Department, 54511 Vandoeuvre-Lès-Nancy, France; Es 4360 Aepmac, Université De Lorraine, Nancy, France

10.1136/ejhpharm-2021-eahpconf.45