production. Mean relative errors (MRE) between the theoretical osmolarities calculated with the PDS and MD equations and the measured osmolarity were compared using a Student’s t test. NPN was divided into seven ranges according to the osmolarity measured by freezing point depression with the OsmoPro osmometer (Advanced Instruments).

Results

2572 NPN were analysed. Osmolarities were distributed as follows: 1.7% from 500 to 749 mosmol/L, 19.6% from 750 to 999 mosmol/L, 25.5% from 1000 to 1249 mosmol/L, 18.4% from 1250 to 1499 mosmol/L, 15.3% from 1500 to 1749 mosmol/L, 15.3% from 1750 to 1999 mosmol/L and 4.0% over 2000 mosmol/L. Between 500–749 and 750–999 mosmol/L, the MRE of osmolarities were similar with both equations (p=0.99 and p=1). However, there was a significant difference in MRE in favour of the PDS equation between 1000 and 1249 mosmol/L (p=0.027), 1250 and 1499 mosmol/L (p=6.5×10^{-45}), 1500 and 1749 mosmol/L (p=2.4×10^{-12}), 1750 and 1999 mosmol/L (p=2.05×10^{-129}) and over 2000 mosmol/L (p=1.66×10^{-3}).

Conclusion and relevance

From 500 to 999 mosmol/L, both equations can be used to predict NPN osmolarities. For NPN with osmolarities from 1000 to over 2000 mosmol/L, the PDS equation was significantly more accurate. Therefore, the actual theoretical osmolarity calculation method should be revised in favour of the MD equation for NPN with osmolarities <1000 mosmol/L and the PDS equation for NPN with osmolarities >1000 mosmol/L.

REFERENCES AND/OR ACKNOWLEDGEMENTS

1. Pereira-da-Silva L. A simple equation to estimate the osmolarity of neonatal parenteral nutrition solutions.

Conflict of interest No conflict of interest

Abstract 3PC-073 Table 1

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>After heating and acidification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca^{2+}</td>
<td>FE^{2+}</td>
</tr>
<tr>
<td>Trichloromethane</td>
<td>-</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>-</td>
</tr>
<tr>
<td>Trihydrate</td>
<td>-</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>-</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>++</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>-</td>
</tr>
<tr>
<td>Cefoxime</td>
<td>-</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>++</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>-</td>
</tr>
<tr>
<td>Cefoxime</td>
<td>-</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>++</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>-</td>
</tr>
<tr>
<td>Cefoxime</td>
<td>-</td>
</tr>
</tbody>
</table>

*: no visual interaction ; +, presence of precipitate ; ++, change colour ; ++++, change colour with presence of precipitate.

section 4: Clinical pharmacy services

4CPS-217 NETUPITANT–PALONOSETRON IN BREAST CANCER: POTENTIAL DRUGS INTERACTIONS

1. Tejedor Tejada*, 1P Nieto Guindo, 1S Portillo-Haro, 1C Castaño Amores. 1Complejo Hospitalario Torrecárdenas, Pharmacy, Almería, Spain; 1Hospital San Cecilio, Pharmacy, Almería, Spain; 1Hospital San Cecilio, Pharmacy, Granada, Spain

10.1136/ejhp-2021-eahpconf.49

Background and importance Neurokinin-1 (NK1) receptor antagonist (RA), netupitant, is usually co-administered with the serotonin (5-HT_3) RA, palonosetron, to prevent chemotherapy induced nausea and vomiting.

Aim and objectives To analyse potential drug interactions (PDI) between netupitant–palonosetron (NEPA) with breast cancer treatment.

Material and methods This was a retrospective observational study including all patients who started with epirubicine and cyclophosphamide in a third level hospital from January to August 2020 (8 months). At the beginning of treatment, the pharmacist reviewed the medication during the pharmaceutical consultation. PDI were identified using Micromedex, UpToDate interactions, Meditcomplex (Spanish Society of Hospital Pharmacy) and Drug Interaction checker (Food and Drugs Administration).
Abstracts

Results 130 medicines were reviewed in 79 patients from January to August 2020. Mean age was 61±6.5 years. 48 patients (60.78%) were polymedicated; the average number of medications per patient was 4.25. At the pharmacokinetic level, the main interaction was CYP3A4 substrate concentrations were increased, and at the pharmacodynamic level, the risk of QT syndrome and serotoninergic syndrome were increased.

61 PDI were found in 40 patients (51.89%); 10 were severe and 21 were moderate. The most common types of drugs involved were steroids, proton pump inhibitors and antidepressants. Eight (80%) severe PDI were accepted and moderate recommendations led to reduction in dosage or concomitant use.

Conclusion and relevance This study showed that more than half of patients with NEPA has at least one PDI. Clinical pharmacists are essential in detecting PDI, which is a positive influence on physician prescriptions and patient treatment outcomes, improving the safety and effectiveness of oncological treatment.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

4CPS-218 ANTIDIABETIC TREATMENT IN FRAIL PATIENTS WITH TYPE II DIABETES ADMITTED TO THE EMERGENCY DEPARTMENT FOR ALTERED GLYCEAMIA

I Vega-Hanna, 1J Ruiz, 1A Juanes-Borrorego, 1L Lopez-Vinardell, 1A Agra-Montava, 1N Mascamagrina, 1MA Margues-Balafyll, 1Hospital Santa Creu I Sant Pau, Pharmacy, Barcelona, Spain; 2Hospital Santa Creu I Sant Pau, Emergency Department, Barcelona, Spain

10.1136/ehpopharm-2021-eahpconf.50

Background and importance Decompensated glycemia is one of the main causes of emergency department (ED) visits among diabetic patients. However, information about antidiabetic treatment and risk factors associated with elderly diabetic patients revisiting the ED is scarce.

Aim and objectives To describe the oral antidiabetic treatment and glycated haemoglobin (%HbA1c) value in frail patients with type II diabetes admitted to an ED due to hyperglycaemia or hypoglycaemia and to evaluate the risk factors associated with 30 day revisits.

Material and methods This was a retrospective observational study (2017–2019). Frail patients with type II diabetes treated with oral antidiabetics admitted to an ED due to hyperglycaemia or hypoglycaemia were included. To evaluate the risk factors associated with 30 day revisits, a multivariate analysis was performed in which comorbidities and treatments risk factors with a p value <0.200 were included.

Results 48 patients were included (mean age 83 (±7.7) years); 23 (48%) were admitted for hyperglycaemia and 25 (52.1%) for hypoglycaemia. Six (12.5%) patients were being treated with insulin only, 27 (56.3%) with oral antidiabetics only and 15 (31.2%) with oral antidiabetics and insulin. The most frequent oral antidiabetic prescribed was metformin, used as monotherapy in 11 (38%) patients, combined with a sulphonylurea in 6 (20.6%) patients, with glibpens in 6 (20.6%) patients and with repaglilde in 3 (10.3%) patients.

38 (79.1%) patients presented a %HbA1c value during the year before the ED visit; in 11 patients (29.8%) between 7.5% and 8.5%, in 18 patients (47.3%) <7.5% and in 9 patients (23.7%) >8.5%. At discharge from the ED, treatment was modified in 14 patients (30.4%); none of them revisited the ED after 30 days. Of the 32 patients (69.6%) in whom the medication was not modified, 10 (21.7%) revisited the ED after 30 days due to alterations in glycaemia, 4 (40%) for hypoglycaemia and 6 (60%) for hyperglycaemia.

In the univariate analysis, chronic heart failure and treatment modification at discharge were associated with a greater risk of 30 day revisit. In the multivariate analysis, a significant association between chronic heart failure and the risk of revisits was found (OR 4.12 (1.02–14.21)).

Conclusion and relevance Frail patients who consulted the ED for drug related problems due to antidiabetic drugs presented a high risk of revisits, with a lower risk in those patients in whom treatment was modified at ED discharge.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

10.1136/ehpopharm-2021-eahpconf.51

Background and importance The pharmacy service (PS) is a cornerstone of the nutritional support of patients, especially those with special needs. For this reason, it is necessary to create individualised nutrition following recommendations from scientific organisations, such as the European Society for Clinical Nutrition and Metabolism (ESPEN).

Aim and objectives To analyse prescriptions of parental nutrition (PN) during the pandemic and compare them with those from the same time period in 2019.

Material and methods This was a retrospective descriptive observational analysis of data from a secondary care hospital during March and April, both in 2019 and 2020. Demographic (age and sex) and clinical (length of PN and diagnosis) data were collected from medical records.

Results There were 157 patients with PN during the period of study in 2020, 106 (67.5%) men with a median age of 67 years (IQR 14.5 years). In 2019, 64 patients received PN, 38 (59.4%) were men with a median age of 70 years (IQR 17). In 2020, 48.8% of patients with PN were under the critical care service (CCS), 30.6% internal medicine service (IMS) and 18.5% surgical service (SS); 108 (68.8%) were diagnosed with COVID-19. In 2019, 15.6% of patients were under CCS, 25% IMS and 56.4% SS. In 2020, 85 patients (54.1%) terminated PN due to health improvement and 60 (38.2%) died; in 2019, 54 (84.4%) improved and 9 (14.1%) died. In 2020, the median age of deceased patients was 67 years (IQR 12.5 years) and in 2019 it was 77 years (IQR 9.5 years). The total number of PN prescribed during the periods of the study was 2121 in 2020 and 876 in 2019.

Conclusion and relevance In the context of the SARS-CoV-2 pandemic, nearly half of all PN were prepared for CCS