Aim and objectives We started this retrospective prospective study about ophthalmic treatments to verify any non-refunds or incorrect prescriptions and to guarantee a better allocation of available resources and prescriptive appropriateness.

Material and methods We created an Excel file to compare data extracted from AIFA’s registers and medical records, and to verify the correct request for reimbursement of prescribed treatments.

Results 400 prescriptions were paper based (not web based as should be the case) with no AIFA registration. Use of paper based AIFA requests: failure to register the new therapy in patients already signed in for other diseases or drugs, failure to transfer four patients from other centres. Of 179 patients treated, 175 dispensations were identified and registered ex novo; involving: 43 requests for reimbursement (obtained from paper based requests), registration of four patients and inclusion of six previously unsolicited treatments. During meetings, incorrect data from a few patients emerged (personal data or treated eye) with consequent correction in six medical records and registers. All folders were registered on the AIFA platform with consequent request of 43 refunds as payment by result, equal to 26 337 586€ (1 531 255€ derived from 25 dispensing requests not previously made and emerged because of the retrospective control carried out in November 2019).

In the Official Gazette No 45 (23 February 2017), a capping agreement was introduced, for each eye, of a refund of the drug’s cost following the seventh treatment in naïve patients. The team agreed to continue monitoring prescriptions and this resulted in a saving of about 40 500€ from the request for 90 refunds as a bonus. On 8 October 2019, the AIFA introduced a simplified multi-drug monitoring register so the pharmacist does not have to dispense drugs and there are no refunds.

Conclusion and relevance Collaboration between clinicians and pharmacists is ongoing, monitoring the correct transfer of patients from the old to the new register. It can be concluded that a figure dedicated to the management of drugs can guarantee clinical and economic drug administration, ensuring greater appropriateness and better allocation of resources.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

11SG-028 BECOMING A GRADUATE HOSPITAL PHARMACIST: A FRENCH NATIONAL SURVEY

A Bernard-Amoux, C Huynh, A Géry, N Ranjit, G Oka, M Gallard, C Jacolin, L Denis, L Sadouzi*. FNSIP-BM, National Federation of Hospital Pharmacy Residents, Montrouge, France

Background and importance Currently, in France, pharmacy students undergo 5 years of pharmacy studies at the university. To be able to work in a hospital pharmacy, they must complete 4 additional years of specialisation ‘residency’. In Europe, the Common Training Framework (CTF), drawn up by the European Association of Hospital Pharmacy (EAHP), recommends this specialisation to improve the quality of pharmacy education and thus comply with the European Statements of hospital pharmacy.

Aim and objectives The objectives of our study were: (1) to assess the areas of activities of pharmacists in French hospitals and (2) to describe their training during the residency.

Material and methods A 52 question survey was written by the French National Federation of Hospital Pharmacy Residents (FNSIP-BM). It was sent to 297 graduate pharmacists from March 2019 to June 2019. The questions concerned their type of internship completed during the 4 years of specialisation, their training and also their first job.

Results Over the study period, 154 (51%) graduate pharmacists responded to the survey. Among them, 137 (89%) were hospital pharmacists and 17 (11%) worked in pharmaceutical industries or health agencies. For their first job, pharmacists worked mainly in various departments as clinical pharmacists with...
Background and importance Cranioplasty implants have evolved considerably in recent years. Until 2019, Custom bone was the leader of the customised cranial implant market. BM were included. Botplus, electronic prescription and dispensation programmes were used as sources of information. The main variables collected were: active substance, brand name, ATC code, number of drug units dispensed and cost. Types of BD were: monoclonal antibodies (MAb), recombinant proteins (RP) and vaccines or immunoglobulins (V).

Results The number of biological active substances included in the hospital formulary was 89 in 2015 and 108 in 2019 (an increase of 21%). BS introduced during the study period were: insulin glargine, epoetin α, pegfilgrastim, rituximab, trastuzumab, etanercept, infliximab and adalimumab. BM were classified as: MAb (32%), RP (48%) and V (20%). According to the ATC index: L (39.8%), J (18.5%), B (16.7%), A (9.3%), V (4.6%), H (2.8%), R (2.8%), C (2.8%), S (1.9%) and M (0.9%).

The pharmaceutical expenditure on BM was: 8 298 177€, 9 123 228€, 10 329 683€, 10 942 396€, 12 533 034€ in 2015, 2016, 2017, 2018 and 2019, respectively. The total expenditure was 51 226 517€ (72.5% MAb, 27.3% RP and 0.2% V). Biological active substances with the highest budgetary impact were: infliximab (7 277 499€), adalimumab (7 023 066€) and etanercept (4 416 568€). BS expenditure during this period was 1 713 288€. Direct cost savings were 1 466 034€. The introduction of BS caused an average decrease of 18% in the prices of reference BM. The hypothetical cost in the case of not having used BS was 10 509 104€. Total savings estimated were: 11 975 408€ (56.6% infliximab BS, 19% etanercept BS and 17.1% trastuzumab BS).