(n=34; 21.8%), in a chemotherapy preparation unit (n=18; 11.5%) or they managed the drug supply chain (n=17; 11%), medical devices (n=14; 9.2%), drug monitoring (n=8; 5.5%), clinical trials (n=8; 5.2%), sterilisation of reusable medical devices (n=4; 2.9%) or as radiopharmacists (n=3; 1.8%), as well as several other settings (n=49; 32%). Regarding their training, 142 (92%) had an additional diploma: 91 (59%) had a specialised university diploma, 34 (22%) had a master’s degree and 5 (3%) had a PhD. Finally, most of them worked in a university hospital (39%), 35% in other public hospitals, 14% in private hospitals, 4.5% in industrial establishments and 4.5% in other structures, such as health agencies or humanitarian organisations.

Conclusion and relevance This survey raises awareness of the increasing involvement of pharmacists in hospitals. The results of the survey are in line with the EAHP’s European Statements. Furthermore, we can see the responsibilities of French hospital pharmacists in the fields of medical devices, sterilisation of reusable medical devices, radiopharmacy and health agencies.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

11G-029 CRANIOPLASTY: A REVIEW OF CUSTOMISED CRANIOPLASTY IMPLANTS

C Yosso*, V Bracquemart, L Rusche. University Hospital Rennes, Pharmacy, Rennes, France

10.1136/ejhpharm-2021-eahpconf.10

Background and importance Cranioplasty implants have evolved considerably in recent years. Until 2019, Custom bone was the leader of the customised cranial implant market. Currently, a multitude of medical devices are available and the market for these implants is shared between several manufacturers. As implantable medical devices, these implants fall under pharmaceutical control in France. Because of their high cost, French regulations require a competition procedure to be launched.

Aim and objectives The purpose of this study was to provide an overview of the various refunded customised cranioplasty implants, so we can get highlight technical arguments to define the best procurement strategy in touch with the surgical team.

Material and methods We identified refunded implants in France using the national healthcare database. This first step went to twenty other university hospital centres were questioned to determine which implant was used most often. Finally, all of these data were synthesised in a comparative table.

Results We identified five refunded implants available on the market. These implants are synthetic implants and autologous bone. However, there were no comparative studies between different types of marketed implants.

Conclusion and relevance The lack of data made it difficult to objectively guide the choice of one implant over another. More comparative studies are needed to assess which method or biomaterial is better for the case study. This work showed that it is more appropriate to orient the purchasing strategy towards a multi beneficiary market. Thus the decision will be taken collectively with the neurosurgeons.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

11G-030 ECONOMIC IMPACT OF BIOLOGICAL MEDICINES ON A THIRD LEVEL HOSPITAL

1S Fortes González*, 2S Vazquez Blanco, 3L Herrero Poch, 4IC De Miguel Bouza, 3JM Castro Dominguez, 4L Villamayor Blanco. Hospital Povisa, Pharmacy, Vigo, Spain; 2Povisa, Hospital Pharmacy, Vigo, Spain; 3Povisa Hospital, Hospital Pharmacy, Vigo, Spain

10.1136/ejhpharm-2021-eahpconf.11

Background and importance High costs of biological medicines (BM) are a financial issue for hospitals. The arrival of biosimilar drugs (BS) improved their accessibilities by reducing their prices.

Aim and objectives To analyse the costs of BM administered in the hospital setting and BM dispensed in the hospital pharmacy. To evaluate the economic impact of introducing BS in our hospital.

Material and methods A retrospective observational study was performed in a tertiary hospital between 2015 and 2019. All BM were included. Bothplus, electronic prescription and dispensation programmes were used as sources of information. The main variables collected were: active substance, brand name, ATC code, number of drug units dispensed and cost. Types of BD were: monoclonal antibodies (MAb), recombinant proteins (RP) and vaccines or immunoglobulins (V).

Results The number of biological active substances included in the hospital formulary was 89 in 2015 and 108 in 2019 (an increase of 21%). BS introduced during the study period were: insulin glargine, epoetin α, pegfilgrastim, rituximab, trastuzumab, etanercept, infliximab and adalimumab. BM were classified as: MAb (32%), RP (48%) and V (20%). According to the ATC index: L (39.8%), J (18.5%), B (16.7%), A (9.3%), V (4.6%), H (2.8%), C (2.8%), S (1.9%) and M (0.9%).

The pharmaceutical expenditure on BM was: 8 298 177€, 9 123 228€, 10 329 683€, 10 942 396€, 12 533 034€ in 2015, 2016, 2017, 2018 and 2019, respectively. The total expense was 51 226 517€ in 2015, 2016, 2017, 2018 and 2019, respectively. The total expense was 51 226 517€ (72.5% MAb, 27.3% RP and 0.2% V). Biological active substances with the highest budgetary impact were: infliximab (7 277 499€), adalimumab (7 023 066€ and etanercept (4 416 568€). BS expenditure during this period was 1 713 288€. Direct cost savings were 1 466 034€. The introduction of BS caused an average decrease of 18% in the prices of reference BM. The hypothetical cost in the case of not having used BS was 10 509 104€. Total savings estimated were: 11 975 408€ (56.6% infliximab BS, 19% etanercept BS and 17.1% trastuzumab BS).