but that there were isolated cases described in the bibliograph. No response was obtained for two drugs.

Conclusion and relevance The information collected in the EPAR is insufficient to resolve doubts for an oncohaematological pharmaceutical care consultation in most cases and it is necessary to perform bibliographic searches to obtain quality information. Laboratories should provide all available information and implement trials to evaluate the efficacy of drugs in real practice.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

4CPS-284 TREATMENT OF CYCLIN INHIBITOR INDUCED NEUTROPENIA: IMPACT ON PROGRESSION FREE SURVIVAL

M Gilabert Sotoca, 2S Morales Murillo, 1Mangues Bafalluy, 1MA Ramos Gil, 1A Morales Portillo, 1Rius Perera, 1JA Schoenenberger Arnaiz, 2Hospital Arnau De Vilanova, Pharmacy, Lleida, Spain; 2Hospital Arnau De Vilanova, Oncology, Lleida, Spain

Background and importance The incidence of neutropenia in cyclin inhibitor (CI) treatment of luminal metastatic breast cancer (LMBC) is very high and leads to a reduction or delay in the required dose.

Aim and objectives To analyse the efficacy of granulocyte colony stimulating factor (G-CSF) in CI treatment. We used filgrastim as G-CSF.

Material and methods A retrospective study of patients that initiated CI treatment between March 2018 and April 2020 was conducted.

Results The cohort included 69 LMBC patients treated with CI. Median age was 65 years (41–89), 20 (29%) patients had a metastatic debut, 21 (30%) progressed during endocrine adjuvant treatment and 28 (41%) had progressed after 5 years of hormonal treatment. 44 patients (63%) received CI treatment as firstline treatment, 10 (15%) after progression to firstline with hormonotherapy and 15 (22%) after progression to chemotherapy. The visceral disease was present in 41%. 48 patients received adjuvant systemic treatment, of whom 35 received adjuvant chemotherapy. 58 patients presented with neutropenia (ANC <1500 cells/mL) of whom 39 received filgrastim (median 780 μg; range 330–1000 μg).

Global median progression free survival (PFS) was 10.88 months (95% CI 5.8 to 15.9) with 38 events. Patients treated as firstline had a PFS of 14 months compared with 8 months for secondline (log rank p=0.006); 16 versus 9 months for firstline and 13 versus 5 months for secondline. We did not find any correlation between G-CSF use and clinical variables, such as firstline or secondline, visceral metastasis, or diagnosis and metastatic interval. PFS in patients with or without filgrastim was similar (14 vs 12 months).

Conclusion and relevance CI induced neutropenia is a widespread complication and correlated with PFS in our patient cohort: 15 versus 8 months in the whole group. G-CSF treatment did not affect PFS but can help to maintain treatment and avoid early relapses. Whether neutropenia induced by treatment with CI behaves as a prognostic factor and whether the use of G-CSF could provide clinical benefit should be studied.
optimal trt management, safety and outcomes. This innovative cancer care model could improve drug awareness of drug consumption and patient education to promptly recognise and manage AEs.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

4CPS-286 EARLY IMPACT OF COVID ON THE ACTIVITY OF A CLINICAL RESEARCH ONCOLOGY PHARMACY UNIT AT A TERTIARY CARE HOSPITAL

P Rovira Torres*, P Latore García, J Martinez Casanova, C Esteban Sanchez, E Serramontmany Morante, P García Ortega, M Carreres Prieto, L Maños Pujol, I Cidoncha Muñoz, Hospital Vall D’Hebron, Pharmacy, Barcelona, Spain

Background and importance The COVID-19 pandemic has impacted notably on clinical care and led to numerous challenges in the conduct of clinical trials (CT). Hospital pharmacies have had to develop new procedures and strategies to ensure pharmaceutical care, availability of treatment and patient safety.

Aim and objectives To analyse the activity in a clinical research oncology pharmacy unit during the COVID-19 period.

Material and methods We retrospectively collected the number of site initiation visits (SIV) and pharmaceutical care visits (screening visits, cycle 1 day 1 (C1D1) visits, follow-up visits, medical queries or patient’s queries) performed in our unit from January to September 2020. Three phases were differentiated: ‘pre-state of emergency’ from 1 January to 13 March; ‘state of emergency’ from 14 March to 21 June; and ‘post-state of emergency’ from 22 June to 30 September.

Results During the ‘pre-state of emergency’ phase, 31 SIV and 273 pharmaceutical care visits were performed. Of these 273, 75 were screenings, 67 C1D1 visits, 26 follow-up visits, 28 medical queries and 77 patient queries.

In the ‘state of emergency’ phase, 47 SIV and 206 pharmaceutical care visits were performed. Of these 206, 69 were screenings, 55 C1D1 visits, 10 follow-up visits, 35 medical queries and 37 patient queries. During the first 90 days of this emergency state, citizens were confined, so remote pharmaceutical care and remote SIV were implemented. 34 screenings were performed and 33 queries about interactions or drug instructions for patients were resolved. Medication was delivered to 139 patients. Four chemotherapy regimens were modified, extending in time administrations of pembrolizumab and cetuximab in four patients. 28 SIV were performed remotely (10 phase I CT, 7 phase II CT and 11 phase III CT).

During the last phase, 60 SIV and 365 pharmaceutical care visits were performed. Of these 365, 83 were screenings, 79 C1D1 visits, 42 follow-up visits, 95 medical queries and 66 patient queries.

Conclusion and relevance The oncohaematological CT pharmacy unit managed to maintain pharmaceutical activity and care during the state of emergency period due to COVID-19, highlighting a considerable increase in activity in the months after the state of emergency.

REFERENCES AND/OR ACKNOWLEDGEMENTS

Conflict of interest No conflict of interest

4CPS-287 IMPACT OF SARS-COV-2 INFECTION IN ACUTE MYELOID LEUKAEMIA PATIENTS: EXPERIENCE OF THE PETHEMA REGISTRY

1Hospital Universitari i Politècnic La Fe, Pharmacy Service, Valencia, Spain; 2Hospital Universitario 12 de Octubre, Haematology and Haemotherapy Service, Madrid, Spain; 3Hospital Universitario Fundación Jiménez Díaz, Haematology and Haemotherapy Service, Madrid, Spain; 4Hospital General Universitario Gregorio Marañón, Haematology and Haemotherapy Service, Madrid, Spain; 5Hospital Universitari i Politècnic La Fe, Haematology and Haemotherapy Service, Valencia, Spain; 6Instituto Catalán de Oncología, Clinic Haematology Service, Hospital de Lérida, Spain

Background and importance SARS-CoV-2 infection can impact the survival of patients with acute myeloid leukaemia (AML) but there is little published evidence in AML.

Aim and objectives To analyse the clinical futures and outcome of SARS-CoV-2 infection in AML patients.

Material and methods An observational multicentre study was conducted between March and May 2020 with 117 patients reported from 47 Spanish centres. Leukaemic and viral infections were studied, and inter-relationships were established.

Results Median age was 68 years, men (56.7% vs 43.3%), median time from AML diagnosis to SARS-CoV-2 was 4 months and mean number of comorbidities was 1.2. Cyto genetic risk was low in 16.9%, intermediate in 57.1% and high in 26.0%; 55.7% had active disease, 39.2% complete remission and 5.1% partial response. 29.4% were off-therapy and 70.6% were receiving anti-leukaemic treatment: induction chemotherapy (25.3%), hypomethylating (19.3%), clinical trial (17.0%), consolidation chemotherapy (14.8%), venetoclax (3.4%), FLT3 inhibitors (3.4%) and/or maintenance (1.1%). Overall, 3.7% were newly diagnosed, 77.8% had received one line of treatment, 14.8% two and 3.7% four. 15.4% had prior allogeneic transplantation.

Only 4.0% of patients were asymptomatic, while the main signs and symptoms were fever (77.8%), pneumonia (75.0%), cough (65.3%), dyspnoea (52.0%), diarrhoea (20.4%), nausea/vomiting (12.2%), rhinorrhea (10.2%) and headache (7.4%). Analytical parameters were: neutrophils 3112 cells/μL (1900–7300), lymphocytes 1090 cells/μL (1000–3000), interleukin 6 118 pg/mL (0–100), ferritin 4505 ng/mL (15–150) and D-dimer 28 23 ng/mL (20–500), with liver enzymes altered in 23.9% of cases. 84.2% received specific treatment for coronavirus infection: chloroquine or hydroxychloroquine (82.2%), lopinavir/ritonavir (54.0%), corticosteroids (39.6%), azithromycin (33.0%), tocilizumab (15.8%), plasma convalescent (3.0%), clinical trial medication (3.0%), remdesivir (2.0%) and/or anakinra (1.0%).

The course was mild in 14.7%, moderate in 32.0% and severe in 53.3%. Mean time to negative was 20.5 days, duration of symptoms 17.6 days and hospital stay 11.1 days. In 48.1% of cases treatment for AML was maintained, in 26.6% delayed and in 25.3% modified due to coronavirus disease. 47.5% died, establishing an association between mortality and AML.