Skip to main content
Log in

Impact of Obesity on Drug Metabolism and Elimination in Adults and Children

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown.

In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes.

This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults.

Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX
Table X
Table XI
Table XII
Table XIII
Table XIV

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention [CDC]. US obesity trends. Atlanta (GA): CDC, 2009 [online]. Available from URL: http://www.cdc.gov/obesity/data/trends.html [Accessed 2011 May 3]

    Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010 Jan 20; 303(3): 235–41

    Article  PubMed  CAS  Google Scholar 

  3. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006 Apr 5; 295(13): 1549–55

    Article  PubMed  CAS  Google Scholar 

  4. IASO. International Association for the Study of Obesity. EU 27 adult overweight & obesity document of the International Association for the Study of Obesity, July 2008 [online]. Available from URL: http://www.iaso.org/publications/trackingobesity/ [Accessed 2012 Mar 5]

  5. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 2010 Jan 20; 303(3): 242–9

    Article  PubMed  CAS  Google Scholar 

  6. Jia WP, Wang C, Jiang S, et al. Characteristics of obesity and its related disorders in China. Biomed Environ Sci 2010 Feb; 23(1): 4–11

    Article  PubMed  CAS  Google Scholar 

  7. Kelly T, Yang W, Chen CS, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008 Sep; 32(9): 1431–7

    Article  CAS  Google Scholar 

  8. Cheymol G. Clinical pharmacokinetics of drugs in obesity: an update. Clin Pharmacokinet 1993 Aug; 25(2): 103–14

    Article  PubMed  CAS  Google Scholar 

  9. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 2000 Sep; 39(3): 215–31

    Article  PubMed  CAS  Google Scholar 

  10. Alexander JK, Dennis EW, Smith WG, et al. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc Res Cent Bull 1962 Winter; 1: 39–44

    PubMed  Google Scholar 

  11. Zavorsky GS. Cardiopulmonary aspects of obesity in women. Obstet Gynecol Clin North Am 2009 Jun; 36(2): 267–84, viii

    Article  PubMed  Google Scholar 

  12. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005 May; 115(5): 1111–9

    PubMed  CAS  Google Scholar 

  13. Guzzaloni G, Grugni G, Minocci A, et al. Liver steatosis in juvenile obesity: correlations with lipid profile, hepatic biochemical parameters and glycemic and insulinemic responses to an oral glucose tolerance test. Int J Obes Relat Metab Disord 2000 Jun; 24(6): 772–6

    Article  PubMed  CAS  Google Scholar 

  14. Wree A, Kahraman A, Gerken G, et al. Obesity affects the liver: the link between adipocytes and hepatocytes. Digestion 2011; 83(1–2): 124–33

    Article  PubMed  Google Scholar 

  15. Fisher CD, Lickteig AJ, Augustine LM, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 2009 Oct; 37(10): 2087–94

    Article  PubMed  CAS  Google Scholar 

  16. Donato MT, Lahoz A, Jimenez N, et al. Potential impact of steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts. Drug Metab Dispos 2006 Sep; 34(9): 1556–62

    Article  PubMed  CAS  Google Scholar 

  17. Donato MT, Jimenez N, Serralta A, et al. Effects of steatosis on drug-metabolizing capability of primary human hepatocytes. Toxicol In Vitro 2007 Mar; 21(2): 271–6

    Article  PubMed  CAS  Google Scholar 

  18. Emery MG, Fisher JM, Chien JY, et al. CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology 2003 Aug; 38(2): 428–35

    Article  PubMed  CAS  Google Scholar 

  19. Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth 2005 Mar; 17(2): 134–45

    Article  PubMed  CAS  Google Scholar 

  20. Marik P, Varon J. The obese patient in the ICU. Chest 1998; 113: 492–8

    Article  PubMed  CAS  Google Scholar 

  21. Darbari DS, Neely M, van den Anker J, et al. Increased clearance of morphine in sickle cell disease: implications for pain management. J Pain 2011 May; 12(5): 531–8

    Article  PubMed  CAS  Google Scholar 

  22. Jain R, Chung SM, Jain L, et al. Implications of obesity for drug therapy: limitations and challenges. Clin Pharmacol Ther 2011 Jul; 90(1): 77–89

    Article  PubMed  CAS  Google Scholar 

  23. Abernethy DR, Greenblatt DJ. Drug disposition in obese humans: an update. Clin Pharmacokinet 1986 May–Jun; 11(3): 199–213

    Article  PubMed  CAS  Google Scholar 

  24. Mulla H, Johnson TN. Dosing dilemmas in obese children. Arch Dis Child Educ Pract Ed 2010 Aug; 95(4): 112–7

    Article  PubMed  CAS  Google Scholar 

  25. Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 2010; 49(2): 71–87

    Article  PubMed  CAS  Google Scholar 

  26. Ingrande J, Lemmens HJ. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 2010; 105 Suppl. 1: i16–23

    Article  PubMed  CAS  Google Scholar 

  27. Morrish GA, Pai MP, Green B. The effects of obesity on drug pharmacokinetics in humans. Expert Opin Drug Metab Toxicol 2011 Jun; 7(6): 697–706

    Article  PubMed  CAS  Google Scholar 

  28. Abernethy DR, Greenblatt DJ. Pharmacokinetics of drugs in obesity. Clin Pharmacokinet 1982 Mar–Apr; 7(2): 108–24

    Article  PubMed  CAS  Google Scholar 

  29. Kotlyar M, Carson SW. Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther 1999 Jan; 37(1): 8–19

    PubMed  CAS  Google Scholar 

  30. Edelman AB, Cherala G, Stanczyk FZ. Metabolism and pharmacokinetics of contraceptive steroids in obese women: a review. Contraception 2010 Oct; 82(4): 314–23

    Article  PubMed  CAS  Google Scholar 

  31. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol 2004 Aug; 58(2): 119–33

    Article  PubMed  Google Scholar 

  32. Flockhart DA. Drug interactions: cytochrome P450 drug interaction table [version 5.0]. Indianapolis (IN): Indiana University School of Medicine, 2009 Jan 12 [online]. Available from URL: http://medicine.iupui.edu/clinpharm/ddis/table.asp [Accessed 2011 May 4]

    Google Scholar 

  33. Williams RT. Detoxication mechanisms: the metabolism and detoxication of drugs,toxic substances, and other organic compounds. 2nd ed. London: Chapman and Hall, 1959

    Google Scholar 

  34. Moretto M, Kupski C, Mottin CC, et al. Hepatic steatosis in patients undergoing bariatric surgery and its relationship to body mass index and comorbidities. Obes Surg 2003 Aug; 13(4): 622–4

    Article  PubMed  Google Scholar 

  35. Silverman JF, O’Brien KF, Long S, et al. Liver pathology in morbidly obese patients with and without diabetes. Am J Gastroenterol 1990 Oct; 85(10): 1349–55

    PubMed  CAS  Google Scholar 

  36. Harnois F, Msika S, Sabate JM, et al. Prevalence and predictive factors of non-alcoholic steatohepatitis (NASH) in morbidly obese patients undergoing bariatric surgery. Obes Surg 2006 Feb; 16(2): 183–8

    Article  PubMed  Google Scholar 

  37. Thorn M, Finnstrom N, Lundgren S, et al. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol 2005 Jul; 60(1): 54–60

    Article  PubMed  CAS  Google Scholar 

  38. Lindell M, Karlsson MO, Lennernas H, et al. Variable expression of CYP and Pgp genes in the human small intestine. Eur J Clin Invest 2003 Jun; 33(6): 493–9

    Article  PubMed  CAS  Google Scholar 

  39. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008 Jan; 21(1): 70–83

    Article  PubMed  CAS  Google Scholar 

  40. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91

    Article  PubMed  CAS  Google Scholar 

  41. Reddy VB, Doss GA, Karanam BV, et al. In vitro and in vivo metabolism of a novel cannabinoid-1 receptor inverse agonist, taranabant, in rats and monkeys. Xenobiotica 2010 Sep; 40(9): 650–62

    Article  PubMed  CAS  Google Scholar 

  42. Li XS, Nielsen J, Cirincione B, et al. Development of a population pharmacokinetic model for taranabant, a cannibinoid-1 receptor inverse agonist. AAPS J 2010 Dec; 12(4): 537–47

    Article  PubMed  CAS  Google Scholar 

  43. Koolen SL, Oostendorp RL, Beijnen JH, et al. Population pharmacokinetics of intravenously and orally administered docetaxel with or without co-administration of ritonavir in patients with advanced cancer. Br J Clin Pharmacol 2010 May; 69(5): 465–74

    Article  PubMed  CAS  Google Scholar 

  44. Sparreboom A, Wolff AC, Mathijssen RH, et al. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol 2007 Oct 20; 25(30): 4707–13

    Article  PubMed  CAS  Google Scholar 

  45. Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994 Jun 1; 47(11): 1969–79

    Article  PubMed  CAS  Google Scholar 

  46. Caraco Y, Zylber-Katz E, Berry EM, et al. Carbamazepine pharmacokinetics in obese and lean subjects. Ann Pharmacother 1995 Sep; 29(9): 843–7

    PubMed  CAS  Google Scholar 

  47. Caraco Y, Zylber-Katz E, Berry EM, et al. Significant weight reduction in obese subjects enhances carbamazepine elimination. Clin Pharmacol Ther 1992 May; 51(5): 501–6

    Article  PubMed  CAS  Google Scholar 

  48. Watkins PB. The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol 1990 Dec; 23(6 Pt 2): 1301–9; discussion 1309-11

    Article  PubMed  CAS  Google Scholar 

  49. Hunt CM, Westerkam WR, Stave GM, et al. Hepatic cytochrome P-4503A (CYP3A) activity in the elderly. Mech Ageing Dev 1992 Jun; 64(1–2): 189–99

    Article  PubMed  CAS  Google Scholar 

  50. Hunt CM, Watkins PB, Saenger P, et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992 Jan; 51(1): 18–23

    Article  PubMed  CAS  Google Scholar 

  51. Streetman DS, Bertino Jr JS, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000 Apr; 10(3): 187–216

    Article  PubMed  CAS  Google Scholar 

  52. Greenblatt DJ, Abernethy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984 Jul; 61(1): 27–35

    PubMed  CAS  Google Scholar 

  53. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet 2007; 46(8): 681–96

    Article  PubMed  CAS  Google Scholar 

  54. Abernethy DR, Greenblatt DJ, Divoll M, et al. The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Clin Pharmacokinet 1984 Mar–Apr; 9(2): 177–83

    Article  PubMed  CAS  Google Scholar 

  55. Flechner SM, Kolbeinsson ME, Tam J, et al. The impact of body weight on cyclosporine pharmacokinetics in renal transplant recipients. Transplantation 1989 May; 47(5): 806–10

    Article  PubMed  CAS  Google Scholar 

  56. Yee GC, Lennon TP, Gmur DJ, et al. Effect of obesity on cyclosporine disposition. Transplantation 1988 Mar; 45(3): 649–51

    Article  PubMed  CAS  Google Scholar 

  57. Rotzinger S, Fang J, Baker GB. Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab Dispos 1998 Jun; 26(6): 572–5

    PubMed  CAS  Google Scholar 

  58. Mihara K, Otani K, Suzuki A, et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berl) 1997 Sep; 133(1): 95–8

    Article  CAS  Google Scholar 

  59. Greenblatt DJ, Friedman H, Burstein ES, et al. Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 1987 Aug; 42(2): 193–200

    Article  PubMed  CAS  Google Scholar 

  60. Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance: implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997 Jul; 87(1): 36–50

    Article  PubMed  CAS  Google Scholar 

  61. Bentley J, Finley J, Humphrey L, et al. Obesity and alfentanil pharmacokinetics [abstract]. Anesth Analg 1983; 62: 251

    Google Scholar 

  62. Marterre WF, Hariharan S, First MR, et al. Gastric bypass in morbidly obese kidney transplant recipients. Clin Transplant 1996 Oct; 10(5): 414–9

    PubMed  CAS  Google Scholar 

  63. Boni J, Leister C, Burns J, et al. Pharmacokinetic profile of temsirolimus with concomitant administration of cytochrome p450-inducing medications. J Clin Pharmacol 2007 Nov; 47(11): 1430–9

    Article  PubMed  CAS  Google Scholar 

  64. Kamdem LK, Streit F, Zanger UM, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005 Aug; 51(8): 1374–81

    Article  PubMed  CAS  Google Scholar 

  65. Picard N, Cresteil T, Premaud A, et al. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit 2004 Dec; 26(6): 600–8

    Article  PubMed  CAS  Google Scholar 

  66. Rogers CC, Alloway RR, Alexander JW, et al. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in endstage renal disease and transplant patients: a pilot study. Clin Transplant 2008 May–Jun; 22(3): 281–91

    Article  PubMed  Google Scholar 

  67. Skottheim IB, Jakobsen GS, Stormark K, et al. Significant increase in systemic exposure of atorvastatin after biliopancreatic diversion with duodenal switch. Clin Pharmacol Ther 2010 Jun; 87(6): 699–705

    Article  PubMed  CAS  Google Scholar 

  68. Skottheim IB, Stormark K, Christensen H, et al. Significantly altered systemic exposure to atorvastatin acid following gastric bypass surgery in morbidly obese patients. Clin Pharmacol Ther 2009 Sep; 86(3): 311–8

    Article  PubMed  CAS  Google Scholar 

  69. Lucas D, Ferrara R, Gonzalez E, et al. Chlorzoxazone, a selective probe for phenotyping CYP2E1 in humans. Pharmacogenetics 1999 Jun; 9(3): 377–88

    Article  PubMed  CAS  Google Scholar 

  70. Lucas D, Farez C, Bardou LG, et al. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam Clin Pharmacol 1998; 12(5): 553–8

    Article  PubMed  CAS  Google Scholar 

  71. O’Shea D, Davis SN, Kim RB, et al. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994 Oct; 56(4): 359–67

    Article  PubMed  Google Scholar 

  72. Kharasch ED, Thummel KE, Mautz D, et al. Clinical enflurane metabolism by cytochrome P450 2E1. Clin Pharmacol Ther 1994 Apr; 55(4): 434–40

    Article  PubMed  CAS  Google Scholar 

  73. Miller MS, Gandolfi AJ, Vaughan RW, et al. Disposition of enflurane in obese patients. J Pharmacol Exp Ther 1980 Nov; 215(2): 292–6

    PubMed  CAS  Google Scholar 

  74. Bentley JB, Vaughan RW, Miller MS, et al. Serum inorganic fluoride levels in obese patients during and after enflurane anesthesia. Anesth Analg 1979 Sep–Oct; 58(5): 409–12

    Article  PubMed  CAS  Google Scholar 

  75. Kharasch ED. Biotransformation of sevoflurane. Anesth Analg 1995 Dec; 81(6 Suppl.): S27–38

    Article  PubMed  CAS  Google Scholar 

  76. Higuchi H, Satoh T, Arimura S, et al. Serum inorganic fluoride levels in mildly obese patients during and after sevoflurane anesthesia. Anesth Analg 1993 Nov; 77(5): 1018–21

    Article  PubMed  CAS  Google Scholar 

  77. Frink Jr EJ, Malan Jr TP, Brown EA, et al. Plasma inorganic fluoride levels with sevoflurane anesthesia in morbidly obese and nonobese patients. Anesth Analg 1993 Jun; 76(6): 1333–7

    PubMed  Google Scholar 

  78. Reichle FM, Conzen PF. Halogenated inhalational anaesthetics. Best Pract Res Clin Anaesthesiol 2003 Mar; 17(1): 29–46

    Article  PubMed  CAS  Google Scholar 

  79. Bentley JB, Vaughan RW, Gandolfi AJ, et al. Halothane biotransformation in obese and nonobese patients. Anesthesiology 1982 Aug; 57(2): 94–7

    Article  PubMed  CAS  Google Scholar 

  80. Barshop NJ, Capparelli EV, Sirlin CB, et al. Acetaminophen pharmacokinetics in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2011 Feb; 52(2): 198–202

    Article  PubMed  CAS  Google Scholar 

  81. Abernethy DR, Divoll M, Greenblatt DJ, et al. Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 1982 Jun; 31(6): 783–90

    Article  PubMed  CAS  Google Scholar 

  82. Rumack BH. Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol 2002; 40(1): 3–20

    Article  PubMed  CAS  Google Scholar 

  83. May DG. Genetic differences in drug disposition. J Clin Pharmacol 1994 Sep; 34(9): 881–97

    Article  PubMed  CAS  Google Scholar 

  84. van den Anker JN. Developmental pharmacology. Dev Disabil Res Rev 2010; 16(3): 233–8

    Article  PubMed  Google Scholar 

  85. Haritos VS, Ching MS, Ghabrial H, et al. Metabolism of dexfenfluramine in human liver microsomes and by recombinant enzymes: role of CYP2D6 and 1A2. Pharmacogenetics 1998 Oct; 8(5): 423–32

    Article  PubMed  CAS  Google Scholar 

  86. Cheymol G, Weissenburger J, Poirier JM, et al. The pharmacokinetics of dexfenfluramine in obese and non-obese subjects. Br J Clin Pharmacol 1995 Jun; 39(6): 684–7

    PubMed  CAS  Google Scholar 

  87. Lefebvre J, Poirier L, Poirier P, et al. The influence of CYP2D6 phenotype on the clinical response of nebivolol in patients with essential hypertension. Br J Clin Pharmacol 2007 May; 63(5): 575–82

    Article  PubMed  CAS  Google Scholar 

  88. Cheymol G, Woestenborghs R, Snoeck E, et al. Pharmacokinetic study and cardiovascular monitoring of nebivolol in normal and obese subjects. Eur J Clin Pharmacol 1997; 51(6): 493–8

    Article  PubMed  CAS  Google Scholar 

  89. Schrenk D, Brockmeier D, Morike K, et al. A distribution study of CYP1A2 phenotypes among smokers and non-smokers in a cohort of healthy Caucasian volunteers. Eur J Clin Pharmacol 1998 Jan; 53(5): 361–7

    Article  PubMed  CAS  Google Scholar 

  90. Rostami-Hodjegan A, Nurminen S, Jackson PR, et al. Caffeine urinary metabolite ratios as markers of enzyme activity: a theoretical assessment. Pharmacogenetics 1996 Apr; 6(2): 121–49

    Article  PubMed  CAS  Google Scholar 

  91. Rasmussen BB, Brosen K. Theophylline has no advantages over caffeine as a putative model drug for assessing CYPIA2 activity in humans. Br J Clin Pharmacol 1997 Mar; 43(3): 253–8

    Article  PubMed  CAS  Google Scholar 

  92. Chine MS, Schwarzenberg SJ, Johnson LA. Altered xanthine oxidase and N-acetyl transferase activity in obese children. Br J Clin Pharmacol 2011 Jul; 72(1): 109–15

    Article  CAS  Google Scholar 

  93. Caraco Y, Zylber-Katz E, Berry EM, et al. Caffeine pharmacokinetics in obesity and following significant weight reduction. Int J Obes Relat Metab Disord 1995 Apr; 19(4): 234–9

    PubMed  CAS  Google Scholar 

  94. Kamimori GH, Somani SM, Knowlton RG, et al. The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. Eur J Clin Pharmacol 1987; 31(5): 595–600

    Article  PubMed  CAS  Google Scholar 

  95. Abernethy DR, Todd EL, Schwartz JB. Caffeine disposition in obesity. Br J Clin Pharmacol 1985 Jul; 20(1): 61–6

    Article  PubMed  CAS  Google Scholar 

  96. Zahorska-Markiewicz B, Waluga M, Zielinski M, et al. Pharmacokinetics of theophylline in obesity. Int J Clin Pharmacol Ther 1996 Sep; 34(9): 393–5

    PubMed  CAS  Google Scholar 

  97. Jusko WJ, Gardner MJ, Mangione A, et al. Factors affecting theophylline clearances: age, tobacco, marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol. J Pharm Sci 1979 Nov; 68(11): 1358–66

    Article  PubMed  CAS  Google Scholar 

  98. Blouin RA, Elgert JF, Bauer LA. Theophylline clearance: effect of marked obesity. Clin Pharmacol Ther 1980 Nov; 28(5): 619–23

    Article  PubMed  CAS  Google Scholar 

  99. Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 1998 Apr; 55(4): 563–84

    Article  PubMed  CAS  Google Scholar 

  100. Shukla UA, Chi EM, Lehr KH. Glimepiride pharmacokinetics in obese versus non-obese diabetic patients. Ann Pharmacother 2004 Jan; 38(1): 30–5

    Article  PubMed  CAS  Google Scholar 

  101. Tan B, Zhang YF, Chen XY, et al. The effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of glipizide in Chinese subjects. Eur J Clin Pharmacol 2010 Feb; 66(2): 145–51

    Article  PubMed  CAS  Google Scholar 

  102. Jaber LA, Ducharme MP, Halapy H. The effects of obesity on the pharmacokinetics and pharmacodynamics of glipizide in patients with non-insulin-dependent diabetes mellitus. Ther Drug Monit 1996 Feb; 18(1): 6–13

    Article  PubMed  CAS  Google Scholar 

  103. Garcia-Martin E, Martinez C, Tabares B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther 2004 Aug; 76(2): 119–27

    Article  PubMed  CAS  Google Scholar 

  104. Abernethy DR, Greenblatt DJ. Ibuprofen disposition in obese individuals. Arthritis Rheum 1985 Oct; 28(10): 1117–21

    Article  PubMed  CAS  Google Scholar 

  105. Kumar V, Wahlstrom JL, Rock DA, et al. CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 2006 Dec; 34(12): 1966–75

    Article  PubMed  CAS  Google Scholar 

  106. Abernethy DR, Greenblatt DJ. Phenytoin disposition in obesity: determination of loading dose. Arch Neurol 1985 May; 42(5): 468–71

    Article  PubMed  CAS  Google Scholar 

  107. Gonzalez FJ, Idle JR. Pharmacogenetic phenotyping and genotyping: present status and future potential. Clin Pharmacokinet 1994; 26(1): 59–70

    Article  PubMed  CAS  Google Scholar 

  108. He SM, Zhou ZW, Li XT, et al. Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Curr Med Chem 2011; 18(5): 667–713

    Article  PubMed  CAS  Google Scholar 

  109. Flockhart DA. Drug interactions and the cytochrome P450 system: the role of cytochrome P450 2C19. Clin Pharmacokinet 1995; 29 Suppl. 1: 45–52

    Article  PubMed  CAS  Google Scholar 

  110. Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 1989 Apr; 45(4): 348–55

    Article  PubMed  CAS  Google Scholar 

  111. Abernethy DR, Greenblatt DJ, Divoll M, et al. Alterations in drug distribution and clearance due to obesity. J Pharmacol Exp Ther 1981 Jun; 217(3): 681–5

    PubMed  CAS  Google Scholar 

  112. Abernethy DR, Greenblatt DJ, Divoll M, et al. Prolongation of drug half-life due to obesity: studies of desmethyldiazepam (clorazepate). J Pharm Sci 1982 Aug; 71(8): 942–4

    Article  PubMed  CAS  Google Scholar 

  113. Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2006 Dec; 2(6): 895–921

    Article  PubMed  CAS  Google Scholar 

  114. Balis FM. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin Pharmacokinet 1986 May–Jun; 11(3): 223–35

    Article  PubMed  CAS  Google Scholar 

  115. Zuccaro P, Guandalini S, Pacifici R, et al. Fat body mass and pharmacokinetics of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Ther Drug Monit 1991 Jan; 13(1): 37–41

    Article  PubMed  CAS  Google Scholar 

  116. Yanni SB, Annaert PP, Augustijns P, et al. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos 2010 Jan; 38(1): 25–31

    Article  PubMed  CAS  Google Scholar 

  117. Pai MP, Lodise TP. Steady-state plasma pharmacokinetics of oral voriconazole in obese adults. Antimicrob Agents Chemother 2011 Jun; 55(6): 2601–5

    Article  PubMed  CAS  Google Scholar 

  118. Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol 1993 Apr; 43(4): 649–54

    PubMed  CAS  Google Scholar 

  119. Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol 2003 Aug; 56(2): 232–7

    Article  PubMed  CAS  Google Scholar 

  120. Yamazaki H, Shaw PM, Guengerich FP, et al. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol 1998 Jun; 11(6): 659–65

    Article  PubMed  CAS  Google Scholar 

  121. Westhoff CL, Torgal AH, Mayeda ER, et al. Pharmacokinetics of a combined oral contraceptive in obese and normal-weight women. Contraception 2010 Jun; 81(6): 474–80

    Article  PubMed  CAS  Google Scholar 

  122. Stanczyk FZ, Roy S. Metabolism of levonorgestrel, norethindrone, and structurally related contraceptive steroids. Contraception 1990 Jul; 42(1): 67–96

    Article  PubMed  CAS  Google Scholar 

  123. Edelman A, Munar M, Elman MR, et al. Effect of ethinyl estradiol/levonorgestrel combined oral contraceptive on the activity of cytochrome P4503A in obese women. Br J Clin Pharmacol. Epub 2012 Feb 2

  124. Ohyama K, Nakajima M, Nakamura S, et al. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos 2000 Nov; 28(11): 1303–10

    PubMed  CAS  Google Scholar 

  125. Fukuchi H, Nakashima M, Araki R, et al. Effect of obesity on serum amiodarone concentration in Japanese patients: population pharmacokinetic investigation by multiple trough screen analysis. J Clin Pharm Ther 2009 Jun; 34(3): 329–36

    Article  PubMed  CAS  Google Scholar 

  126. Brain EG, Yu LJ, Gustafsson K, et al. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br J Cancer 1998 Jun; 77(11): 1768–76

    Article  PubMed  CAS  Google Scholar 

  127. Lind MJ, Margison JM, Cerny T, et al. Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 1989; 25(2): 139–42

    Article  PubMed  CAS  Google Scholar 

  128. Engel G, Hofmann U, Heidemann H, et al. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther 1996 Jun; 59(6): 613–23

    Article  PubMed  CAS  Google Scholar 

  129. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996 Jul; 31(1): 47–64

    Article  PubMed  CAS  Google Scholar 

  130. Caraco Y, Zylber-Katz E, Berry EM, et al. Antipyrine disposition in obesity: evidence for negligible effect of obesity on hepatic oxidative metabolism. Eur J Clin Pharmacol 1995; 47(6): 525–30

    Article  PubMed  CAS  Google Scholar 

  131. Horikiri Y, Suzuki T, Mizobe M. Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci 1998 Mar; 87(3): 289–94

    Article  PubMed  CAS  Google Scholar 

  132. Le Jeunne C, Poirier JM, Cheymol G, et al. Pharmacokinetics of intravenous bisoprolol in obese and non-obese volunteers. Eur J Clin Pharmacol 1991; 41(2): 171–4

    Article  PubMed  Google Scholar 

  133. Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996 Apr; 30(4): 263–99

    Article  PubMed  CAS  Google Scholar 

  134. Viriyayudhakorn S, Thitiarchakul S, Nachaisit S, et al. Pharmacokinetics of quinine in obesity. Trans R Soc Trop Med Hyg 2000 Jul–Aug; 94(4): 425–8

    Article  PubMed  CAS  Google Scholar 

  135. Zharikova OL, Fokina VM, Nanovskaya TN, et al. Identification of the major human hepatic and placental enzymes responsible for the bio-transformation of glyburide. Biochem Pharmacol 2009 Dec 15; 78(12): 1483–90

    Article  PubMed  CAS  Google Scholar 

  136. Jaber LA, Antal EJ, Slaughter RL, et al. The pharmacokinetics and pharmacodynamics of 12 weeks of glyburide therapy in obese diabetics. Eur J Clin Pharmacol 1993; 45(5): 459–63

    Article  PubMed  CAS  Google Scholar 

  137. Joerger M, Huitema AD, Meenhorst PL, et al. Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer Chemother Pharmacol 2005 May; 55(5): 488–96

    Article  PubMed  CAS  Google Scholar 

  138. Rudek MA, Sparreboom A, Garrett-Mayer ES, et al. Factors affecting pharmacokinetic variability following doxorubicin and docetaxel-based therapy. Eur J Cancer 2004 May; 40(8): 1170–8

    Article  PubMed  CAS  Google Scholar 

  139. Thompson PA, Rosner GL, Matthay KK, et al. Impact of body composition on pharmacokinetics of doxorubicin in children: a Glaser Pediatric Research Network study. Cancer Chemother Pharmacol 2009 Jul; 64(2): 243–51

    Article  PubMed  CAS  Google Scholar 

  140. Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 2005 Apr; 106(1): 97–132

    Article  PubMed  CAS  Google Scholar 

  141. Tchernof A, Levesque E, Beaulieu M, et al. Expression of the androgen metabolizing enzyme UGT2B15 in adipose tissue and relative expression measurement using a competitive RT-PCR method. Clin Endocrinol (Oxf) 1999 May; 50(5): 637–42

    Article  CAS  Google Scholar 

  142. Mutlib AE, Goosen TC, Bauman JN, et al. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15: potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 2006 May; 19(5): 701–9

    Article  PubMed  CAS  Google Scholar 

  143. Hayakawa H, Fukushima Y, Kato H, et al. Metabolism and disposition of novel des-fluoro quinolone garenoxacin in experimental animals and an interspecies scaling of pharmacokinetic parameters. Drug Metab Dispos 2003 Nov; 31(11): 1409–18

    Article  PubMed  CAS  Google Scholar 

  144. Van Wart S, Phillips L, Ludwig EA, et al. Population pharmacokinetics and pharmacodynamics of garenoxacin in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2004 Dec; 48(12): 4766–77

    Article  PubMed  CAS  Google Scholar 

  145. Court MH, Duan SX, Guillemette C, et al. Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 2002 Nov; 30(11): 1257–65

    Article  PubMed  CAS  Google Scholar 

  146. Abernethy DR, Greenblatt DJ, Divoll M, et al. Enhanced glucuronide conjugation of drugs in obesity: studies of lorazepam, oxazepam, and acetaminophen. J Lab Clin Med 1983 Jun; 101(6): 873–80

    PubMed  CAS  Google Scholar 

  147. Chung JY, Cho JY, Yu KS, et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther 2005 Jun; 77(6): 486–94

    Article  PubMed  CAS  Google Scholar 

  148. Okumura K, Kita T, Chikazawa S, et al. Genotyping of N-acetylation polymorphism and correlation with procainamide metabolism. Clin Pharmacol Ther 1997 May; 61(5): 509–17

    Article  PubMed  CAS  Google Scholar 

  149. Christoff PB, Conti DR, Naylor C, et al. Procainamide disposition in obesity. Drug Intell Clin Pharm 1983 Jul–Aug; 17(7–8): 516–22

    PubMed  CAS  Google Scholar 

  150. Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos 1996 Sep; 24(9): 1015–9

    PubMed  CAS  Google Scholar 

  151. Browning B, Thormann K, Donaldson A, et al. Busulfan dosing in children with BMIs ≥85% undergoing HSCT: a new optimal strategy. Biol Blood Marrow Transplant 2011 Sep; 17(9): 1383–8

    Article  PubMed  CAS  Google Scholar 

  152. Nguyen L, Leger F, Lennon S, et al. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: a population pharmacokinetic study. Cancer Chemother Pharmacol 2006 Jan; 57(2): 191–8

    Article  PubMed  CAS  Google Scholar 

  153. Gibbs JP, Gooley T, Corneau B, et al. The impact of obesity and disease on busulfan oral clearance in adults. Blood 1999 Jun 15; 93(12): 4436–40

    PubMed  CAS  Google Scholar 

  154. Buggia I, Zecca M, Alessandrino EP, et al. Itraconazole can increase systemic exposure to busulfan in patients given bone marrow transplantation. GITMO (Gruppo Italiano Trapianto di Midollo Osseo). Anticancer Res 1996 Jul–Aug; 16(4A): 2083–8

    PubMed  CAS  Google Scholar 

  155. Farrell GC, Teoh NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Anat Rec (Hoboken) 2008 Jun; 291(6): 684–92

    Article  Google Scholar 

  156. Al-Jahdari WS, Yamamoto K, Hiraoka H, et al. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. Eur J Clin Pharmacol 2006 Jul; 62(7): 527–33

    Article  PubMed  CAS  Google Scholar 

  157. van Kralingen S, Diepstraten J, Peeters MYM, et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet 2011 Nov 1; 50(11): 739–50

    Article  PubMed  Google Scholar 

  158. Cortinez LI, Anderson BJ, Penna A, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth 2010 Oct; 105(4): 448–56

    Article  PubMed  CAS  Google Scholar 

  159. Rahman A, Korzekwa KR, Grogan J, et al. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994 Nov 1; 54(21): 5543–6

    PubMed  CAS  Google Scholar 

  160. Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996 Jan; 82(1): 167–72

    PubMed  CAS  Google Scholar 

  161. Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 1995 Dec; 83(6): 1194–204

    Article  PubMed  CAS  Google Scholar 

  162. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991 Dec; 73(6): 790–3

    PubMed  CAS  Google Scholar 

  163. Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes: the role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 1994 Nov–Dec; 22(6): 909–15

    PubMed  CAS  Google Scholar 

  164. Wojcicki J, Jaroszynska M, Drozdzik M, et al. Comparative pharmacokinetics and pharmacodynamics of propranolol and atenolol in normolipaemic and hyperlipidaemic obese subjects. Biopharm Drug Dispos 2003 Jul; 24(5): 211–8

    Article  PubMed  CAS  Google Scholar 

  165. Cheymol G, Poirier JM, Carrupt PA, et al. Pharmacokinetics of beta-adrenoceptor blockers in obese and normal volunteers. Br J Clin Pharmacol 1997 Jun; 43(6): 563–70

    Article  PubMed  CAS  Google Scholar 

  166. Cheymol G, Poirier JM, Barre J, et al. Comparative pharmacokinetics of intravenous propranolol in obese and normal volunteers. J Clin Pharmacol 1987 Nov; 27(11): 874–9

    Article  PubMed  CAS  Google Scholar 

  167. Bowman SL, Hudson SA, Simpson G, et al. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br J Clin Pharmacol 1986 May; 21(5): 529–32

    Article  PubMed  CAS  Google Scholar 

  168. McNeil JJ, Louis WJ. Clinical pharmacokinetics of labetalol. Clin Pharmacokinet 1984 Mar–Apr; 9(2): 157–67

    Article  PubMed  CAS  Google Scholar 

  169. Hamann SR, Blouin RA, McAllister Jr RG, et al. Clinical pharmacokinetics of verapamil. Clin Pharmacokinet 1984 Jan–Feb; 9(1): 26–41

    Article  PubMed  CAS  Google Scholar 

  170. Echizen H, Eichelbaum M. Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clin Pharmacokinet 1986 Nov–Dec; 11(6): 425–49

    Article  PubMed  CAS  Google Scholar 

  171. Abernethy DR, Schwartz JB. Verapamil pharmacodynamics and disposition in obese hypertensive patients. J Cardiovasc Pharmacol 1988 Feb; 11(2): 209–15

    PubMed  CAS  Google Scholar 

  172. Zito RA, Reid PR. Lidocaine kinetics predicted by indocyanine green clearance. N Engl J Med 1978 May 25; 298(21): 1160–3

    Article  PubMed  CAS  Google Scholar 

  173. Abernethy DR, Greenblatt DJ. Lidocaine disposition in obesity. Am J Cardiol 1984 Apr 1; 53(8): 1183–6

    Article  PubMed  CAS  Google Scholar 

  174. Oda Y, Mizutani K, Hase I, et al. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth 1999 Jun; 82(6): 900–3

    Article  PubMed  CAS  Google Scholar 

  175. Shibutani K, Inchiosa Jr MA, Sawada K, et al. Accuracy of pharmacokinetic models for predicting plasma fentanyl concentrations in lean and obese surgical patients: derivation of dosing weight (“pharmacokinetic mass”). Anesthesiology 2004 Sep; 101(3): 603–13

    Article  PubMed  CAS  Google Scholar 

  176. Routledge PA, Shand DG. Clinical pharmacokinetics of propranolol. Clin Pharmacokinet 1979 Mar–Apr; 4(2): 73–90

    Article  PubMed  CAS  Google Scholar 

  177. Pea F, Licari M, Baldassarre M, et al. MEGX disposition in critically-ill trauma patients: subsequent assessments during the first week following trauma. Fundam Clin Pharmacol 2002 Dec; 16(6): 519–25

    Article  PubMed  CAS  Google Scholar 

  178. Koska 3rd AJ, Romagnoli A, Kramer WG. Effect of cardiopulmonary bypass on fentanyl distribution and elimination. Clin Pharmacol Ther 1981 Jan; 29(1): 100–5

    Article  PubMed  Google Scholar 

  179. Jiko M, Yano I, Okuda M, et al. Altered pharmacokinetics of paclitaxel in experimental hepatic or renal failure. Pharm Res 2005 Feb; 22(2): 228–34

    Article  PubMed  CAS  Google Scholar 

  180. Pai MP. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis 2010 Sep; 17(5): e53–62

    Article  PubMed  Google Scholar 

  181. Ribstein J, du Cailar G, Mimran A. Combined renal effects of overweight and hypertension. Hypertension 1995 Oct; 26(4): 610–5

    Article  PubMed  CAS  Google Scholar 

  182. Marik P, Varon J. The obese patient in the ICU. Chest 1998 Feb; 113(2): 492–8

    Article  PubMed  CAS  Google Scholar 

  183. Kasiske BL, Crosson JT. Renal disease in patients with massive obesity. Arch Intern Med 1986 Jun; 146(6): 1105–9

    Article  PubMed  CAS  Google Scholar 

  184. Cindik N, Baskin E, Agras PI, et al. Effect of obesity on inflammatory markers and renal functions. Acta Paediatr 2005 Dec; 94(12): 1732–7

    Article  PubMed  Google Scholar 

  185. Csernus K, Lanyi E, Erhardt E, et al. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr 2005 Jan; 164(1): 44–9

    Article  PubMed  CAS  Google Scholar 

  186. Savino A, Pelliccia P, Giannini C, et al. Implications for kidney disease in obese children and adolescents. Pediatr Nephrol 2011 May; 26(5): 749–58

    Article  PubMed  Google Scholar 

  187. Post FA, Wyatt CM, Mocroft A. Biomarkers of impaired renal function. Curr Opin HIV AIDS 2010 Nov; 5(6): 524–30

    Article  PubMed  Google Scholar 

  188. Henegar JR, Bigler SA, Henegar LK, et al. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol 2001 Jun; 12(6): 1211–7

    PubMed  CAS  Google Scholar 

  189. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 1986 Jul–Aug; 11(4): 257–82

    Article  PubMed  CAS  Google Scholar 

  190. Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 1998 Oct; 54(8): 621–5

    Article  PubMed  CAS  Google Scholar 

  191. Dvorchik B, Arbeit RD, Chung J, et al. Population pharmacokinetics of daptomycin. Antimicrob Agents Chemother 2004 Aug; 48(8): 2799–807

    Article  PubMed  CAS  Google Scholar 

  192. Pai MP, Norenberg JP, Anderson T, et al. Influence of morbid obesity on the single-dose pharmacokinetics of daptomycin. Antimicrob Agents Chemother 2007 Aug; 51(8): 2741–7

    Article  PubMed  CAS  Google Scholar 

  193. Dvorchik BH, Damphousse D. The pharmacokinetics of daptomycin in moderately obese, morbidly obese, and matched nonobese subjects. J Clin Pharmacol 2005 Jan; 45(1): 48–56

    Article  PubMed  CAS  Google Scholar 

  194. Harland SJ, Newell DR, Siddik ZH, et al. Pharmacokinetics of cis-diammine-1,1-cyclobutane dicarboxylate platinum(II) in patients with normal and impaired renal function. Cancer Res 1984 Apr; 44(4): 1693–7

    PubMed  CAS  Google Scholar 

  195. Ekhart C, Rodenhuis S, Schellens JH, et al. Carboplatin dosing in overweight and obese patients with normal renal function, does weight matter? Cancer Chemother Pharmacol 2009 Jun; 64(1): 115–22

    Article  PubMed  CAS  Google Scholar 

  196. Schmitt A, Gladieff L, Lansiaux A, et al. A universal formula based on cystatin C to perform individual dosing of carboplatin in normal weight, underweight, and obese patients. Clin Cancer Res 2009 May 15; 15(10): 3633–9

    Article  PubMed  CAS  Google Scholar 

  197. Frydman A. Low-molecular-weight heparins: an overview of their pharmacodynamics, pharmacokinetics and metabolism in humans. Haemostasis 1996; 26 Suppl. 2: 24–38

    PubMed  CAS  Google Scholar 

  198. Barras MA, Duffull SB, Atherton JJ, et al. Modelling the occurrence and severity of enoxaparin-induced bleeding and bruising events. Br J Clin Pharmacol 2009 Nov; 68(5): 700–11

    Article  PubMed  CAS  Google Scholar 

  199. Yee JY, Duffull SB. The effect of body weight on dalteparin pharmacokinetics: a preliminary study. Eur J Clin Pharmacol 2000 Jul; 56(4): 293–7

    Article  PubMed  CAS  Google Scholar 

  200. Barrett JS, Gibiansky E, Hull RD, et al. Population pharmacodynamics in patients receiving tinzaparin for the prevention and treatment of deep vein thrombosis. Int J Clin Pharmacol Ther 2001 Oct; 39(10): 431–46

    PubMed  CAS  Google Scholar 

  201. Richards DA. Comparative pharmacodynamics and pharmacokinetics of cimetidine and ranitidine. J Clin Gastroenterol 1983; 5 Suppl. 1: 81–90

    Article  PubMed  Google Scholar 

  202. Abernethy DR, Greenblatt DJ, Matlis R, et al. Cimetidine disposition in obesity. Am J Gastroenterol 1984 Feb; 79(2): 91–4

    PubMed  CAS  Google Scholar 

  203. Lewis TV, Johnson PN, Nebbia AM, et al. Increased enoxaparin dosing is required for obese children. Pediatrics 2011 Mar; 127(3): e787–90

    Article  PubMed  Google Scholar 

  204. Karlsson E. Clinical pharmacokinetics of procainamide. Clin Pharmacokinet 1978 Mar–Apr; 3(2): 97–107

    Article  PubMed  CAS  Google Scholar 

  205. Drusano GL. An overview of the pharmacology of intravenously administered ciprofloxacin. Am J Med 1987 Apr 27; 82(4A): 339–45

    PubMed  CAS  Google Scholar 

  206. Allard S, Kinzig M, Boivin G, et al. Intravenous ciprofloxacin disposition in obesity. Clin Pharmacol Ther 1993 Oct; 54(4): 368–73

    Article  PubMed  CAS  Google Scholar 

  207. Daley-Yates PT, McBrien DC. The mechanism of renal clearance of cisplatin (cis-dichlorodiammine platinum II) and its modification by furosemide and probenecid. Biochem Pharmacol 1982 Jul 1; 31(13): 2243–6

    Article  PubMed  CAS  Google Scholar 

  208. Zamboni WC, Houghton PJ, Johnson RK, et al. Probenecid alters topotecan systemic and renal disposition by inhibiting renal tubular secretion. J Pharmacol Exp Ther 1998 Jan; 284(1): 89–94

    PubMed  CAS  Google Scholar 

  209. Iisalo E. Clinical pharmacokinetics of digoxin. Clin Pharmacokinet 1977 Jan–Feb; 2(1): 1–16

    Article  PubMed  CAS  Google Scholar 

  210. Abernethy DR, Greenblatt DJ, Smith TW. Digoxin disposition in obesity: clinical pharmacokinetic investigation. Am Heart J 1981 Oct; 102(4): 740–4

    Article  PubMed  CAS  Google Scholar 

  211. Davis JM, Fann WE. Lithium. Annu Rev Pharmacol 1971; 11: 285–302

    Article  PubMed  CAS  Google Scholar 

  212. Reiss RA, Haas CE, Karki SD, et al. Lithium pharmacokinetics in the obese. Clin Pharmacol Ther 1994 Apr; 55(4): 392–8

    Article  PubMed  CAS  Google Scholar 

  213. Chagnac A, Herman M, Zingerman B, et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant 2008 Dec; 23(12): 3946–52

    Article  PubMed  CAS  Google Scholar 

  214. Mortensen A, Lenz K, Abildstrom H, et al. Anesthetizing the obese child. Paediatr Anaesth 2011 Jun; 21(6): 623–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

John van den Anker and Catherijne Knibbe contributed equally to this work.

The authors declare no conflicts of interest that are directly relevant to the content of this review. The authors thank Sabine Ahlers and Saskia de Mik-van Ham for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherijne A. J. Knibbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brill, M.J.E., Diepstraten, J., van Rongen, A. et al. Impact of Obesity on Drug Metabolism and Elimination in Adults and Children. Clin Pharmacokinet 51, 277–304 (2012). https://doi.org/10.2165/11599410-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11599410-000000000-00000

Keywords

Navigation